June 28, 2019 File No. 262018.063 Ms. Corina Forson Chief Hazards Geologist State of Washington Department of Natural Resources Washington Geological Survey 111 Washington Street SE Olympia, Washington 98504 Mr. Scott Black Program Development Manager State of Washington Office of Superintendent of Public Instruction 600 Washington Street Olympia, Washington 98504 Subject: Department of Natural Resources Washington Geological Survey, School Seismic Safety Assessment Project, Contract No. AE 410 - Seismic Evaluation for Battle Ground School District Dear Ms. Forson and Mr. Black: Reid Middleton and our consultant team, under the direction of The Department of Natural Resources (DNR) Washington Geological Survey (WGS) School Seismic Safety Project, have conducted seismic evaluations of 222 school buildings and 5 fire stations throughout Washington State. This letter is transmitting the results of these seismic assessments for each school district that graciously participated in this statewide study. We understand that you will be forwarding this letter and the accompanying seismic screening reports to each school district for their reference and use. Many disparate studies on improving the seismic safety of our public school buildings have been performed over the last several decades. Experts in building safety, geologic hazards, emergency management, education, and even the news media have been asserting for decades that seismic risks in older public school buildings represent a risk to our communities. The time to act is now, before we have a damaging earthquake and/or tsunami that could be catastrophic. This statewide school seismic safety assessment project provides a unique opportunity to draw attention to the need for statewide seismic safety policies and funding on behalf of all school districts that will help enable school districts to increase the seismic safety of their older buildings to make them safer for students, teachers, staff, parents, and the community. It is not the intent of this study to create an unfunded mandate for school districts to seismically upgrade their schools without associated funding or statewide seismic safety policy support. The overall goal of this study was to screen and evaluate the current levels of seismic vulnerabilities of a statewide selection of our older public school buildings and to use the data and information to help quantify funding and policy needs to improve the seismic safety of our public schools. In this process, we are using the information to inform not only the Governor EVERETT 728 134th Street SW Suite 200 Everett, WA 98204 425 741-3800 and the Legislature of the policy and funding needs for seismically safe schools but also the school districts that participated in the study. #### School Buildings Evaluated in the Battle Ground School District We appreciate Battle Ground School District's participation and invaluable assistance in this statewide project. The following school district buildings were included as part of this study: - 1. Maple Grove K-8, Gym - 2. Maple Grove K-8, Main - 3. Prairie High School, 400 Building - 4. Prairie High School, 500 Building - 5. Prairie High School, 600 Building - 6. River Homelink, Main Building The seismic screening of these buildings was performed using the American Society of Civil Engineers' Standard 41-17, *Seismic Evaluation and Retrofit of Existing Buildings* (ASCE 41-17), national standard Tier 1 structural and nonstructural seismic screening checklists specific to each building's structure type. The WGS also conducted seismic site class assessments to measure the shear wave velocity and determine the soil site class at each campus. Site class is an approximation of how much soils at a site will amplify earthquake-induced ground motions and is a critical parameter used in seismic design. Reid Middleton subsequently used this information in their seismic screening analyses. The following table is a list of available seismic assessment information used in our study: | School Building | Year
Constructed | FEMA Building
Classification | Structural Drawings
Available for Review | | | |-----------------------------------|---------------------|---|---|--|--| | Maple Grove K-8, Gym | 1990 | Wood Frame | Yes | | | | Maple Grove K-8, Main | 1990 | Wood Frame | Yes | | | | Prairie High School, 400 Building | 1995 | Wood Frame | Yes | | | | Prairie High School, 500 Building | 1979 | Reinforced Masonry Walls with Flexible Diaphragms | Yes | | | | Prairie High School, 600 Building | 1979 | Reinforced Masonry Walls with Flexible Diaphragms | Yes | | | | River Homelink, Main Building | 1980 | Wood Frame | Yes | | | Department of Natural Resources Washington Geological Survey School Seismic Safety Project – Battle Ground School District June 28, 2019 File No. 262018.063 Page 3 Detailed descriptions of the seismic screening evaluations of these buildings can be found in the individual building reports and the ASCE 41-17 Tier 1 screening checklist documents enclosed with this letter. This information will also be available for download on the WGS website: https://www.dnr.wa.gov/programs-and-services/geology/geologic-hazards/earthquakes-and-faults/school-seismic-safety. These Tier 1 seismic screening checklists are often the first step employed by structural engineers when trying to determine the seismic vulnerabilities of existing buildings and to begin a process of mitigating these seismic vulnerabilities. School district facilities management personnel and their design consultants should be able to take advantage of this information to help inform and address seismic risks in existing or future renovation, repair, or modernization projects. It is important to note that information used for these school seismic screenings was limited to available construction drawings and limited site observations by our team of licensed structural engineers to observe the general conditions and configuration of each building being seismically screened. In many cases, construction drawings were not available for review as noted in the table above. Due to the limited scope of the study, our team of engineers were not able to perform more-detailed investigations above ceilings, behind wall finishes, in confined spaces, or in other areas obstructed from view. Where building component seismic adequacy was unknown due to lack of available information, the unknown conditions were indicated as such on the ASCE 41-17 Tier 1 checklists. Additional field investigations are recommended for the "unknown" seismic evaluation checklist items if more-definitive determinations of seismic safety compliance and further development of seismic mitigation strategies are desired. ### **Nonstructural Seismic Screening** The enclosed ASCE 41-17 Tier 1 Nonstructural Seismic Screening checklists can provide immediate guidance on seismic deficiencies in nonstructural elements. Mitigating the risk of earthquake impacts from these nonstructural elements should be addressed as soon as practical by school districts. Some nonstructural elements may be easily mitigated by installing seismic bracing of tall cabinets, moving heavy contents to the bottom of shelving, and adding seismic strapping or bracing to water tanks and overhead elements (light fixtures, mechanical units, piping, fire protection systems, etc.). It is often most economical to mitigate nonstructural seismic hazards when the building is already undergoing mechanical, electrical, plumbing, or architectural upgrades or modernizations. Enclosed with these nonstructural seismic screening checklists are excerpts from the Federal Emergency Management Agency (FEMA) publication E-74 entitled, *Reducing the Risks of Nonstructural Earthquake Damage* (FEMA E-74). We have included these FEMA publication excerpts to help illustrate typical seismic mitigation measures that can potentially be implemented by district facilities and maintenance personnel. Department of Natural Resources Washington Geological Survey School Seismic Safety Project - Battle Ground School District June 28, 2019 File No. 262018.063 Page 4 ### Structural Seismic Screening The enclosed ASCE 41-17 Tier 1 Structural Seismic Screening checklists have evaluation statements that are reviewed for specific building elements and systems to determine if these items are seismically compliant, noncompliant, not applicable, or unknown. These evaluation statements provide guidance on which structural systems and elements have identified seismic deficiencies and should be investigated further. Further seismic evaluations beyond these seismic screening checklists typically consist of more-detailed seismic structural analyses to better define the seismic vulnerabilities and risks. This information is then used to determine cost-effective ways to seismically improve these buildings with stand-alone seismic upgrade projects or incrementally as part of other ongoing building maintenance, repair, or modernization projects. Consequently, implementing seismic structural mitigation strategies typically requires that they be developed as a part of longer-term capital improvements and modernization programs developed by the school district and their design consultants. #### **Next Steps** Due to the screening nature of the ASCE 41-17 Tier 1 procedures, an in-depth seismic evaluation and analysis of these buildings may be needed before detailed seismic upgrades or improvements, conceptual designs, and probable construction cost estimates are developed. If you have any questions or comments regarding the engineering reports or would like to discuss this further, please contact us. Sincerely, David B. Swanson, P.E., S.E. Principal, LEED AP, F.SEI ####
Limitations The professional services described in this document were performed based on available information and limited visual observation of the structures. No other warranty is made as to the professional advice included in this document. This document has been prepared for the exclusive use of the Department of Natural Resources, the Office of the Superintendent of Public Instruction, and this school district and is not intended for use by other parties, as it may not contain sufficient information for other parties' purposes or their uses. ## 1. Battle Ground, Maple Grove K-8, Gym ### 1.1 Building Description Building Name: Gym Facility Name: Maple Grove K-8 District Name: Battle Ground ICOS Latitude: 45.768 ICOS Longitude: -122.544 **ICOS** County/District ID: 6119 ICOS Building ID: 17800 ASCE 41 Bldg Type: W2 Enrollment: 484 Gross Sq. Ft. : 17,350 Year Built: 1990 Number of Stories: 1 S_{XS BSE-2E}: 0.818 S_{X1 BSE-2E}: 0.515 ASCE 41 Level of Seismicity: Site Class: D $V_{S30}(m/s)$: 320 Liquefaction Potential: Very Low Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers Maple Grove ESD 112 Daycare Mountain View Martial Arts and Fitness Maple Grove School Maple Grove School Maple Grove School Map data © 2019 Imagery © 2019 , Digital Globe, Metro, Portland Oregon, State of Oregon The Maple Grove K-8 gymnasium building is a one-story wood-framed structure. The building is constructed on level ground and is located in Battle Ground, Washington. The building measures approximately 125 feet by 180 feet. Building construction consists of wood stud walls. The ground floor system is a concrete slab-on-grade. The roof system consists of premanufactured wood trusses and wood joists with a playwood sheathing diaphragm. The building shares the site with a playground, multiple school buildings, a parking lot, and various outbuildings. ### 1.1.1 Building Use The gym building includes gymnasium space and storage. The school has over 480 student occupants. ### 1.1.2 Structural System Table 1.1-1. Structural System Description of Maple Grove K-8 | Structural System | Description | | | | | | |---------------------|---|--|--|--|--|--| | Structural Roof | The structural roof is comprised of premanufactured wood trusses with plywood | | | | | | | Structural Root | sheathing. | | | | | | | Structural Floor(s) | The ground level is a 4-inch concrete floor slab. | | | | | | | Foundations | The wood stud walls are supported by continuous concrete wall footings. Steel | | | | | | | Foundations | columns are supported by concrete spread footings. | | | | | | | Crossity System | The gravity system is composed of wood beams, wood-framed walls, and steel | | | | | | | Gravity System | columns. | | | | | | | Lateral System | The lateral system is wood shear walls with plywood sheathing. | | | | | | ## 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of Maple Grove K-8 | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | # 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Battle Ground Maple Grove K-8 Gym | Deficiency | Description | |------------------|--| | | There are no structural details available and compliance of this item could not be visually verified. This item is | | Load Path | likely non-compliant due to the building's age and construction type. Further investigation is required to make a | | | final determination. | | C | Wood diaphragms do not consist of wood structural panels or diagonal sheathing. Installation of wood | | Spans | structural panels is required. | | O(1 D' 1 | Diaphragm consists of Tectum roof deck. Diaphragm strengthening may be appropriate to mitigate seismic | | Other Diaphragms | risk. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Battle Ground Maple Grove K-8 Gym | Unknown Item | Description | | | | | | |-----------------------------|---|--|--|--|--|--| | | No structural details were available and compliance could not be visually verified. This item requires further | | | | | | | Mezzanines | investigation to make a final determination on its compliance and to develop a mitigation recommendation, if | | | | | | | | necessary. | | | | | | | | The liquefaction potential of site soils is unknown at this time given available information. Very low | | | | | | | Liquefaction | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | | | | | | a licensed geotechnical engineer to determine liquefaction potential. | | | | | | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | | | | | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | | | | | | Rupture | expected surface fault ruptures. | | | | | | | Cindon Colonia | No structural details were available and compliance could not be visually verified. This item requires further | | | | | | | Girder-Column
Connection | investigation to make a final determination on its compliance and to develop a mitigation recommendation, if | | | | | | | Connection | necessary. | | | | | | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Battle Ground Maple Grove K-8 Gym | Deficiency | Description | |---|--| | LSS-3 Emergency Power. HR-
not required; LS-LMH; PR-
LMH. | Inadequate anchoring/bracing of life-safety equipment. All life-safety equipment should be anchored or braced to the structure. | | LSS-5 Sprinkler Ceiling
Clearance. HR-not required;
LS-MH; PR-MH. | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler heads. | | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Battle Ground Maple Grove K-8 Gym | | Description | |------------------------------|--| | LSS-1 Fire Suppression | · | | Piping. HR-not required; LS- | Further investigation is required to review fire suppression anchorage and bracing. | | LMH; PR-LMH. | | | LSS-2 Flexible Couplings. | | | HR-not required; LS-LMH; | Further investigation is required to review fire suppression for flexible couplings. | | PR-LMH. | | | LF-1 Independent Support. | | | HR-not required; LS-MH; PR- | Further investigation is required to review the support
system for light fixtures. | | MH. | | | M-1 Ties. HR-not required; | Further investigation is required to verify detailing of masonry veneer ties. | | LS-LMH; PR-LMH. | ruther investigation is required to verify detaining of masonly veheer ties. | | M-3 Weakened Planes. HR- | | | not required; LS-LMH; PR- | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | LMH. | | | CF-3 Fall-Prone Contents. | Further investigation is required to review anchorage of fall-prone contents. | | HR-not required; LS-H; PR-H. | ruther investigation is required to review anchorage of fan-prone contents. | | ME-1 Fall-Prone Equipment. | Further investigation is required to review anchorage of fall-prone equipment. | | HR-not required; LS-H; PR-H. | ruther investigation is required to review anchorage of fair-profit equipment. | | ME-2 In-Line Equipment. HR- | Further investigation is required to review vertical support and lateral bracing of equipment. | | not required; LS-H; PR-H. | Further investigation is required to review vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow Equipment. | | | HR-not required; LS-H; PR- | Further investigation is required to review anchorage of tall narrow equipment. | | MH. | | Figure 1-1. Maple Grove K-8 Gym - East Exterior Figure 1-2. Maple Grove K-8 Gym - North Exterior Figure 1-3. Maple Grove K-8 Gym - West Exterior Figure 1-4. Gymnasium - North Interior Figure 1-5. Gymnasium - South Interior Figure 1-6. Inadequate Fire Sprinkler Penetration Clearance in Classroom Figure 1-7. Unanchored Shelving and Storage ### Battle Ground, Maple Grove K-8, Gym ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | X | | | There are no structural details available and compliance of this item could not be visually verified. This item is likely non-compliant due to the building's age and construction type. Further investigation is required to make a final determination. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | | X | No structural details were available and compliance could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | | | X | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | | X | | |-------------------------|--|---|---|--| | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | | | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | ## Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ### **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Very low liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected | |-----------------------|---|--|---|--| | | | | | surface fault ruptures. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | ## 17-6 Collapse Prevention Structural Checklist for Building Type W2 Building record drawings have been reviewed,
when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---------| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: Structural panel sheathing – 1,000 lb/ft; Diagonal sheathing – 700 lb/ft; Straight sheathing – 100 lb/ft; All other conditions – 100 lb/ft. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.7.1) | X | | | | | | Stucco (Exterior
Plaster) Shear Walls | Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.2) | | | X | | | | Gypsum Wallboard or
Plaster Shear Walls | Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.3) | | | X | | | | Narrow Wood Shear
Walls | Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.4) | X | | | | | | Walls Connected
Through Floors | Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Tier 2: Sec. 5.5.3.6.2; Commentary: Sec. A.3.2.7.5) | | | X | | | | Hillside Site | For structures that are taller on at least one side
by more than one-half story because of a sloping
site, all shear walls on the downhill slope have
an aspect ratio less than 1-to-1. (Tier 2: Sec.
5.5.3.6.3; Commentary: Sec. A.3.2.7.6) | | | X | | | | Cripple Walls | Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Tier 2: Sec. 5.5.3.6.4; Commentary: Sec. A.3.2.7.7) | | | X | | | | | Walls with openings greater than 80% of the | | | | | |----------|---|--|---|--|--| | | length are braced with wood structural panel | | | | | | | shear walls with aspect ratios of not more than | | | | | | Openings | 1.5-to-1 or are supported by adjacent | | X | | | | | construction through positive ties capable of | | | | | | | transferring the seismic forces. (Tier 2: Sec. | | | | | | | 5.5.3.6.5; Commentary: Sec. A.3.2.7.8) | | | | | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------------|---|---|----|-----|---|--| | Wood Posts | There is a positive connection of wood posts to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.3) | X | | | | | | Wood Sills | All wood sills are bolted to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.4) | X | | | | | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | | | | X | No structural details were available and compliance could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low & Moderate Seismicity) #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---------| | Wood Sill Bolts | Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable edge and end distance provided for wood and concrete. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.7) | X | | | | | ### Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | Diaphragm Continuity | The diaphragms are not composed of split-level floors and do not have expansion joints. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.1) | X | | | | | | Roof Chord Continuity | All chord elements are continuous, regardless of changes in roof elevation. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.3) | X | | | | | | Diaphragm
Reinforcement at
Openings | There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Tier 2: Sec. 5.6.1.5; Commentary: Sec. A.4.1.8) | | | X | | | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | | X | | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | X | | Wood diaphragms do not consist of wood structural panels or diagonal sheathing. Installation of wood structural panels is required. | |--|--|---|---|---| | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | X | | | Other Diaphragms | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | Diaphragm consists of Tectum roof deck. Diaphragm strengthening may be appropriate to mitigate seismic risk. | ## Battle Ground, Maple Grove K-8, Gym # 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | | X | Further investigation is required to review fire suppression anchorage and bracing. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | | X | Further investigation is required to review fire suppression for flexible couplings. | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | X | | | Inadequate anchoring/bracing of life-safety equipment. All life-safety equipment should be anchored or braced to the structure. | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | X | | | Inadequate
penetration clearances at panelized ceilings for fire suppression devices. Provide clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler heads. | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | HM-1 Hazardous | Equipment mounted on vibration isolators and | | | | | | | Material Equipment. HR- | containing hazardous material is equipped with | | | v | | | | LMH; LS-LMH; PR- | restraints or snubbers. (Tier 2: Sec. 13.7.1; | | | Λ | | | | LMH. | Commentary: Sec. A.7.12.2) | | | | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | X | | | |--|--|--|---|--|--| | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | X | | | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | | | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | | ### **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | | | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural
Separations. HR-not
required; LS-not
required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|--|--|---|---| | P-6 Tops. HR-not required; LS-not required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Acoustical tile or lay-in panel ceilings have | | | | |-------------------------|---|--|----|---------------------------| | C-7 Seismic Joints. HR- | seismic separation joints such that each | | | Non-applicable due to | | not required: LS-not | continuous portion of the ceiling is no more than | | X | ASCE 41 Performance | | required; PR-H. | 2,500 ft2 (232.3 m2) and has a ratio of long-to- | | 11 | Level: "Life Safety (LS)" | | required, 1 K-11. | short dimension no more than 4-to-1. (Tier 2: | | | Level. Elie Salety (ES) | | | Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | | ### **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | LF-1
Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. | | LF-2 Pendant Supports.
HR-not required; LS-not
required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | X | | | |--|--|--|---|--|--| | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | X | | | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | X | | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | X | | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | X | | | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | | | | | Glazing panes of any size in curtain walls and | | | | | | |------------------------|---|--|---|--|--|--| | | individual interior or exterior panes more than | | | | | | | CG-8 Overhead Glazing. | 16 ft2 (1.5 m2) in area are laminated annealed | | | | | | | HR-not required; LS- | or laminated heat-strengthened glass and are | | X | | | | | MH; PR-MH. | detailed to remain in the frame when cracked. | | | | | | | | (Tier 2: Sec. 13.6.1.5; Commentary: Sec. | | | | | | | | A.7.4.8) | | | | | | ### **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | | X | Further investigation is required to verify detailing of masonry veneer ties. | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | | X | Further investigation is
required to verify
anchorage of masonry
veneer at weakened planes. | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | | | M-6 Anchorage. HR-not
required; LS-MH; PR-
MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any
seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | X | | | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | Х | | | ## **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | #### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | X | | | | S-2 Stair Details. HR-not required; LS-LMH; PR-LMH. | The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | X | | | ### **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | IJ | COMMENT | |--|---|---|----|-----|----|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | | X | Further investigation is required to review anchorage of fall-prone contents. | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended | Items suspended without lateral bracing are free | | | | |------------------|--|--|---|---------------------------| | Contents. HR-not | to swing from or move with the structure from | | | Non-applicable due to | | required; LS-not | which they are suspended without damaging | | X | ASCE 41 Performance | | required; PR-H. | themselves or adjoining components. (Tier 2: | | | Level: "Life Safety (LS)" | | required; PK-II. | Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | | ### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | | X | Further investigation is required to review anchorage of fall-prone equipment. | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | X | Further investigation is required to review vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | | | X | Further investigation is required to review anchorage of tall narrow equipment. | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-9 Conduit
Couplings.
HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Piping** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | PP-1 Flexible Couplings.
HR-not required; LS-not required; PR-H. | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not required; LS-not required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Elevators | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--------------------------|---|---|----|-----|---|-------------| | EL-1 Retainer Guards. | Sheaves and drums have cable retainer guards. | | | | | | | HR-not required; LS-H; | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | | X | | No Elevator | | PR-H. | A.7.16.1) | | | | | | | EL-2 Retainer Plate. HR- | A retainer plate is present at the top and bottom | | | | | | | not required; LS-H; PR- | of both car and counterweight. (Tier 2: Sec. | | | X | | No Elevator | | H. | 13.7.11; Commentary: Sec. A.7.16.2) | | | | | | | EL-3 Elevator Equipment. HR-not required; LS-not required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | | X | No Elevator | |---|---|--|---|-------------| | EL-4 Seismic Switch. HR-not required; LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | | X | No Elevator | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | | X | No Elevator | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | | X | No Elevator | | EL-7 Brackets. HR-not required; LS-not required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | | X | No Elevator | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | | X | No Elevator | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | | X | No Elevator | ## 1. Battle Ground, Maple Grove K-8, Main Building ### 1.1 Building Description Building Name: Main Building Facility Name: Maple Grove K-8 District Name: Battle Ground ICOS Latitude: 45.768 ICOS Longitude: -122.544 **ICOS** County/District ID: 6119 ICOS Building ID: 14257 ASCE 41 Bldg Type: W2 Enrollment: 484 Gross Sq. Ft.: 64,693 Year Built: 1990 Number of Stories: 2 S_{XS BSE-2E}: 0.818 S_{X1 BSE-2E:} 0.515 ASCE 41 Level of Seismicity: Site Class: D $V_{S30}(m/s)$: 320 Liquefaction Potential: Very Low Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers The Maple Grove K-8 main school building is a two-story wood-framed structure. The building is constructed on level ground and is located in Battle Ground, Washington. The original 1989 construction consisted of two buildings measuring 240 feet by 79 feet and 38 feet by 88 feet. A 1991 expansion joined the two structures and increased the overall dimensions to approximately 295 feet by 255 feet. Building construction consists of wood stud walls. The ground floor system is a concrete slab-on-grade. The second floor system consists of plywood sheathing over wood joists. The roof system consists of premanufactured wood trusses and wood joists with a plywood sheathing diaphragm. The building shares the site with a playground, a gymnasium, the River Homelink school building, a parking lot, and various outbuildings. ### 1.1.1 Building Use The Maple Grove main school building includes classrooms and storage. The school has over 480 student occupants. ### 1.1.2 Structural System Table 1.1-1. Structural System Description of Maple Grove K-8 | Structural System | Description | |---------------------|--| | Structural Roof | The main school building is comprised of premanufactured wood trusses with plywood sheathing. | | Structural Floor(s) | The ground level is a 4-inch concrete floor slab. | | Foundations | The wood stud walls are supported by continuous concrete wall footings. Steel columns are supported by concrete spread footings. | | Gravity System | The gravity system is composed of wood beams, wood-framed walls, and steel columns. | | Lateral System | The lateral system is wood shear walls with plywood sheathing. | ### 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of Maple Grove K-8 | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | # 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided
based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Battle Ground Maple Grove K-8 Main Building | Deficiency | Description | |------------------|---| | | Ratio of least horizontal dimension of seismic-force-resisting system to building height is greater than 0.6Sa. | | Overturning | Additional overturning resistance such as new footings and hold-downs may be appropriate to mitigate seismic | | | risk. Further investigation is required. | | Walls Connected | No call-outs for straps in new drawings. Lateral system strengthening may be appropriate to mitigate seismic | | Through Floors | risk, such as strengthening existing shear walls, adding new shear walls, or adding strapping between floors. | | C: 1 W 11 | Cripple walls are not braced to the foundation with wood structural panels. Add plywood sheathing to cripple | | Cripple Walls | walls. | | Diaphragm | The discharge is discontinuous New sheer wells at leastion of discharge discontinuity may be agreemented | | Continuity | The diaphragm is discontinuous. New shear walls at location of diaphragm discontinuity may be appropriate. | | Roof Chord | The roof chord is not continuous through changes in roof elevation. New shear walls at location of diaphragm | | Continuity | discontinuity may be appropriate. | | Other Diaphragms | Diaphragm fasteners non-compliant. Cross-grain bending is present. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Battle Ground Maple Grove K-8 Main Building | Unknown Item | Description | |---------------|---| | | The liquefaction potential of site soils is unknown at this time given available information. Very low | | Liquefaction | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | Rupture | expected surface fault ruptures. | | W 1D 4 | This evaluation item is unknown due to incomplete drawings provided. This item requires further investigation | | Wood Posts | to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Battle Ground Maple Grove K-8 Main Building | Deficiency | Description | |----------------------------|--| | LSS-3 Emergency Power. HR- | | | not required; LS-LMH; PR- | No emergency generator | | LMH. | | | CF-2 Tall Narrow Contents. | Anaharaga is required for tall narrow contents more than six fact high to provide averturning | | HR-not required; LS-H; PR- | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | MH. | restraint. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Battle Ground Maple Grove K-8 Main Building | Unknown Item | Description | |------------------------------|--| | LSS-1 Fire Suppression | | | Piping. HR-not required; LS- | Further investigation is required to review fire suppression anchorage and bracing. | | LMH; PR-LMH. | | | LSS-2 Flexible Couplings. | | | HR-not required; LS-LMH; | Further investigation is required to review fire suppression for flexible couplings. | | PR-LMH. | | | LSS-4 Stair and Smoke Ducts. | Further investigation is required to review stair and smoke ducts for bracing and flexible | | HR-not required; LS-LMH; | connections at seismic joints. | | PR-LMH. | connections at seismic joints. | | LSS-5 Sprinkler Ceiling | | | Clearance. HR-not required; | Further investigation is required to review penetration clearances at panelized ceilings for fire | | LS-MH; PR-MH. | suppression devices. | | LF-1 Independent Support. | | | HR-not required; LS-MH; PR- | Further investigation is required to review the support system for light fixtures. | | MH. | | | M-1 Ties. HR-not required; | | | LS-LMH; PR-LMH. | Further investigation is required to verify detailing of masonry veneer ties. | | M-2 Shelf Angles. HR-not | Further investigation is required to verify the method of support of masonry veneer at each floor | | required; LS-LMH; PR-LMH. | above grade. | | M-3 Weakened Planes. HR- | | | not required; LS-LMH; PR- | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | LMH. | | | PCOA-2 Canopies. HR-not | Further investigation is required to verify anchorage of canopies at building exits to the main | | required; LS-LMH; PR-LMH. | structure. | | S-2 Stair Details. HR-not | | | required; LS-LMH; PR-LMH. | Further investigation is required to verify stair connections. | | CF-3 Fall-Prone Contents. | | | HR-not required; LS-H; PR-H. | Further investigation is required to review anchorage of fall-prone contents. | | EL-1 Retainer Guards. HR-not | | | required; LS-H; PR-H. | Further investigation is required to verify elevator sheaves and drums have cable retainer guards. | | EL-2 Retainer Plate. HR-not | | | required; LS-H; PR-H. | Further investigation is required to verify proper installation of retainer plates. | Figure 1-1. Maple Grove K-8 Main Building - West Exterior Figure 1-2. Maple Grove K-8 Main Building - North Exterior Figure 1-3. Maple Grove K-8 Main Building - East Exterior Figure 1-4. Maple Grove K-8 Main Building - South Exterior (Main Entrance) Figure 1-5. Unbraced Fire Sprinkler Piping Figure 1-6. Unanchored Nonstructural Components in Kitchen Figure 1-7. Unanchored Shelving and Storage Figure 1-8. Unanchored Shelving and Storage Figure 1-9. Roof Top HVAC Unit Figure 1-10. Library Interior ## Battle Ground, Maple Grove K-8, Main Building ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---------| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | X | | | | | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced
independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | X | | | | | ## $\label{eq:Building System - Building Configuration} \textbf{Building System - Building Configuration}$ | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | X | | | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | X | | | | | | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | X | | | |----------|--|---|--|--| | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | X | | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | ## Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ## **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Very low liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|--| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | | X | | | Ratio of least horizontal dimension of seismic-forceresisting system to building height is greater than 0.6Sa. Additional overturning resistance such as new footings and hold-downs may be appropriate to mitigate seismic risk. Further investigation is required. | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | X | | | | | ## 17-6 Collapse Prevention Structural Checklist for Building Type W2 Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ## Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: Structural panel sheathing – 1,000 lb/ft; Diagonal sheathing – 700 lb/ft; Straight sheathing – 100 lb/ft; All other conditions – 100 lb/ft. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.7.1) | X | | | | | | Stucco (Exterior
Plaster) Shear Walls | Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.2) | | | X | | | | Gypsum Wallboard or
Plaster Shear Walls | Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.3) | | | X | | | | Narrow Wood Shear
Walls | Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.4) | X | | | | | | Walls Connected
Through Floors | Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Tier 2: Sec. 5.5.3.6.2; Commentary: Sec. A.3.2.7.5) | | X | | | No call-outs for straps in
new drawings. Lateral
system strengthening may be
appropriate to mitigate
seismic risk, such as
strengthening existing shear
walls, adding new shear
walls, or adding strapping
between floors. | | Hillside Site | For structures that are taller on at least one side
by more than one-half story because of a sloping
site, all shear walls on the downhill slope have
an aspect ratio less than 1-to-1. (Tier 2: Sec.
5.5.3.6.3; Commentary: Sec. A.3.2.7.6) | | | X | | |---------------|--|---|---|---|---| | Cripple Walls | Cripple walls below first-floor-level shear walls are braced to the
foundation with wood structural panels. (Tier 2: Sec. 5.5.3.6.4; Commentary: Sec. A.3.2.7.7) | | X | | Cripple walls are not braced to the foundation with wood structural panels. Add plywood sheathing to cripple walls. | | Openings | Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Tier 2: Sec. 5.5.3.6.5; Commentary: Sec. A.3.2.7.8) | X | | | | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------------|---|---|----|-----|---|---| | Wood Posts | There is a positive connection of wood posts to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.3) | | | | X | This evaluation item is unknown due to incomplete drawings provided. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Wood Sills | All wood sills are bolted to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.4) | X | | | | | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | | | X | | | # High Seismicity (Complete the Following Items in Addition to the Items for Low & Moderate Seismicity) ### Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---------| | Wood Sill Bolts | Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable edge and end distance provided for wood and concrete. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.7) | X | | | | | ### **Diaphragms** | | | 1 | | | | | |-----------------|----------------------|---|----|-----|---|---------| | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | | _ , | | _ | | | _ | | | Diaphragm Continuity | The diaphragms are not composed of split-level floors and do not have expansion joints. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.1) | | X | | The diaphragm is discontinuous. New shear walls at location of diaphragm discontinuity may be appropriate. | |--|--|---|---|---|--| | Roof Chord Continuity | All chord elements are continuous, regardless of changes in roof elevation. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.3) | | X | | The roof chord is not continuous through changes in roof elevation. New shear walls at location of diaphragm discontinuity may be appropriate. | | Diaphragm
Reinforcement at
Openings | There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Tier 2: Sec. 5.6.1.5; Commentary: Sec. A.4.1.8) | | | X | | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | | X | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | X | | | | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | X | | | | | Other Diaphragms | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | | X | | Diaphragm fasteners non-
compliant. Cross-grain
bending is present. | ## Battle Ground, Maple Grove K-8, Main Building ## 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | | X | Further investigation is required to review fire suppression anchorage and bracing. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | | X | Further investigation is required to review fire suppression for flexible couplings. | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | X | | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | | X | Further investigation is required to review stair and smoke ducts for bracing and flexible connections at seismic joints. | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | | | X | Further investigation is required to review penetration clearances at panelized ceilings for fire suppression devices. | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---------| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | | X | | | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | X | | |--|--|--|---|--| | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | ### **Partitions** | 1 at titions | | | | | | | |---
--|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | | | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural Separations. HR-not required; LS-not required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. | | LF-2 Pendant Supports. HR-not required; LS-not required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02,
and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | X | | | |--|--|--|---|--|--| | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | X | | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | X | | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | X | | | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | | | | CG-8 Overhead Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | | X | | | ### **Masonry Veneer** | wiasoni y v eneci | | | | | | | |---|--|---|----|-----|---|--| | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | | X | Further investigation is required to verify detailing of masonry veneer ties. | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | | X | Further investigation is required to verify the method of support of masonry veneer at each floor above grade. | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | | X | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | | | required; LS-MH; PR-MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | | X | Further investigation is required to verify anchorage of canopies at building exits to the main structure. | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | X | | | ## **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | #### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for
Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | X | | | | S-2 Stair Details. HR-not
required; LS-LMH; PR-
LMH. | The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | | X | Further investigation is required to verify stair connections. | ## **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | NI/Δ | ĪĪ | COMMENT | |--|--|---|----|----------|----|---| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | EVALUATION STATEMENT Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) Contents more than 6 ft (1.8 m) high with a | С | NC | N/A
X | U | COMMENT Anchorage is required for | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | tall narrow contents more
than six feet high to
provide overturning
restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | | X | Further investigation is required to review anchorage of fall-prone contents. | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended | Items suspended without lateral bracing are free | | | | |------------------|--|--|---|---------------------------| | Contents. HR-not | to swing from or move with the structure from | | | Non-applicable due to | | required; LS-not | which they are suspended without damaging | | X | ASCE 41 Performance | | required; PR-H. | themselves or adjoining components. (Tier 2: | | | Level: "Life Safety (LS)" | | required; PK-II. | Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | | ### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|---|---|-----|-------|---|---| | ZVIZZIIIOIVIIZW | Equipment weighing more than 20 lb (9.1 kg) | | 110 | 11/11 | | COMMENT | | ME-1 Fall-Prone | whose center of mass is more than 4 ft (1.2 m) | | | | | | | Equipment. HR-not | above the adjacent floor level, and which is not | | | X | | | | required; LS-H; PR-H. | in-line equipment, is braced. (Tier 2: Sec. 13.7.1 | | | | | | | | 13.7.7; Commentary: Sec. A.7.12.4) | | | | | | | | Equipment installed in line with a duct or piping | | | | | | | ME-2 In-Line | system, with an operating weight more than 75 | | | | | | | Equipment. HR-not | lb (34.0 kg), is supported and laterally braced | | | X | | | | required; LS-H; PR-H. | independent of the duct or piping system. (Tier | | | | | | | | 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | | | | | Equipment more than 6 ft (1.8 m) high with a | | | | | | | ME-3 Tall Narrow | height-to-depth or height-to-width ratio greater | | | | | | | Equipment. HR-not | than 3-to-1 is anchored to the floor slab or | | | X | | | | required; LS-H; PR-MH. | adjacent structural walls. (Tier 2: Sec. 13.7.1 | | | | | | | | 13.7.7; Commentary: Sec. A.7.12.6) | | | | | | | | Mechanically operated doors are detailed to | | | | | Non-applicable due to | | _ | operate at a story drift ratio of 0.01. (Tier 2: | | | X | | ASCE 41 Performance | | required; PR-MH. | Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | | | Level: "Life Safety (LS)" | | ME-5 Suspended | Equipment suspended without lateral bracing is | | | | | | | Equipment. HR-not | free to swing from or move with the structure | | | | | Non-applicable due to | | required; LS-not | from which it is suspended without damaging | | | X | | ASCE 41 Performance | | required; PR-H. | itself or adjoining components. (Tier 2: Sec. | | | | | Level: "Life Safety (LS)" | | | 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | | | | | | Equipment mounted on vibration isolators is | | | | | | | | equipped with horizontal restraints or snubbers | | | | | Non-applicable due to | | * ' | and with vertical restraints to resist overturning. | | | X | | ASCE 41 Performance | | required; PR-H. | (Tier 2: Sec. 13.7.1; Commentary: Sec. | | | | | Level: "Life Safety (LS)" | | | A.7.12.9) | | | | | | | ME-7 Heavy Equipment. | Floor supported or platform-supported | | | | | Non-applicable due to | | HR-not required; LS-not | equipment weighing more than 400 lb (181.4 | | | X | | ASCE 41 Performance | | required; PR-H. | kg) is anchored to the structure. (Tier 2: Sec. | | | | | Level: "Life Safety (LS)" | | | 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | | | • | | ME-8 Electrical | Electrical equipment is laterally braced to the | | | | | Non-applicable due to | | Equipment. HR-not | structure. (Tier 2: Sec. 13.7.7; Commentary: | | | X | | ASCE 41 Performance | | required; LS-not | Sec. A.7.12.11) | | | | | Level: "Life Safety (LS)" | | required; PR-H. | · | | | | | , , , | | | Conduit greater than 2.5 in. (64 mm) trade size | | | | | | | ME-9 Conduit | that is attached to panels, cabinets, or other | | | | | Non-applicable due to | | Couplings. HR-not | equipment and is subject to relative seismic | | | X | | ASCE 41 Performance | | required; LS-not | displacement has flexible couplings or | | | | | Level: "Life Safety (LS)" | | required; PR-H. | connections. (Tier 2: Sec. 13.7.8; Commentary: | | | | | | | | Sec. A.7.12.12) | | | | | | ## Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6;
Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Elevators | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|--| | | Sheaves and drums have cable retainer guards. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.1) | | | | X | Further investigation is required to verify elevator sheaves and drums have cable retainer guards. | | | A retainer plate is present at the top and bottom of both car and counterweight. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.2) | | | | X | Further investigation is required to verify proper installation of retainer plates. | | EL-3 Elevator Equipment. HR-not required; LS-not required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|---|---|---| | EL-4 Seismic Switch. HR-not required; LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | Non-applicable due to ASCE 41 Performance Level: "Life Safety (LS)" | | EL-7 Brackets. HR-not
required; LS-not
required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | Non-applicable due to ASCE 41 Performance Level: "Life Safety (LS)" | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | Non-applicable due to ASCE 41 Performance Level: "Life Safety (LS)" | ## 1. Battle Ground, Prairie High School, 400 Building ## 1.1 Building Description Building Name: 400 Building Facility Name: Prairie High School District Name: Battle Ground ICOS Latitude: 45.705 ICOS Longitude: -122.555 **ICOS** County/District ID: 6119 ICOS Building ID: 15523 ASCE 41 Bldg Type: W2 Enrollment: 1,577 Gross Sq. Ft. : 25,057 Year Built: 1995 Number of Stories: 2 S_{XS BSE-2E:} 0.827 S_{X1 BSE-2E}: 0.518 ASCE 41 Level of Seismicity: Site Class: D $V_{S30}(m/s)$: 297 Liquefaction Potential: Very Low Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers The Prairie High School 400 Building is a two-story wood-framed structure constructed on level ground and located in Brush Prairie, Washington. The building was originally constructed in 1995. The building is rectangular in plan, roughly 150 feet by 100 feet, with a maximum roof height of around 22 feet. The building construction consists of wood stud walls with masonry veneer on the first floor and stucco on the second floor. The roof and floor systems are flexible structural panel sheathing diaphragms supported by wood framing. The ground floor structure is a concrete slab-on-grade. The building shares the site with nine other Prairie High School buildings. The building is directly east of the 500 Building. ### 1.1.1 Building Use The Prairie High School 400 Building includes classrooms and administrative offices. The high school has over 1,570 student occupants. ### 1.1.2 Structural System Table 1.1-1. Structural System Description of Prairie High School | Structural System | Description | |---------------------|---| | Structural Roof | The structural roof consists of wood structural panel sheathing over wood | | Structural Root | framing. | | Ctmactaged Floor(a) | The structural floor consists of wood structural panel sheathing over wood | | Structural Floor(s) | framing. | | Foundations | The foundation is assumed to be a conventional shallow foundation with spread | | Foundations | footings under columns and continuous footings under bearing walls. | | Cravity System | The roof and floor framing are supported by wood stud bearing walls and wood | | Gravity System | beams and posts. | | | The lateral forces are resisted by the wood structural sheathing roof diaphragm | | Lateral System | and transferred into the structural panel wood shear walls in both the | | | longitudinal and transverse directions. | ## 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of Prairie High School | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | # 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Battle Ground Prairie High School 400 Building | Deficiency | Description | |--------------|---| | Shear Stress | Pseudo shear stress is greater than 1000 plf. The building likely requires wood shear wall strengthening. Further | | Check | investigation is required. | | Diagonally | | | Sheathed and | Unblocked diaphragm has horizontal spans over 40 feet. Diaphragm strengthening including additional nailing, | | Unblocked | blocking, and strapping may be appropriate to mitigate seismic risk. | | Diaphragms | | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Battle Ground Prairie High School 400 Building | Unknown Item | Description | |---------------|---| | | The liquefaction potential of site soils is unknown at this time given available information. Very low | | Liquefaction | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | Rupture | expected surface fault ruptures. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some
nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Battle Ground Prairie High School 400 Building | Deficiency | Description | |--|---| | LSS-5 Sprinkler Ceiling | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide | | Clearance. HR-not required; | clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler | | LS-MH; PR-MH. | heads. | | HM-4 Shutoff Valves. HR-MH; LS-MH; PR-MH. | Insufficient protection (shutoff valves or other devices) to limit spills/leaks from piping containing hazardous materials. Installation of shutoff valves may be appropriate to limit hazardous material spills. | | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | ME-3 Tall Narrow Equipment.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow equipment more than six feet high to provide overturning restraint. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Battle Ground Prairie High School 400 Building | Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Battle Ground Prairie High School 400 Building | | | |--|--|--| | Unknown Item | Description | | | LSS-1 Fire Suppression | | | | Piping. HR-not required; LS- | Further investigation is required to review fire suppression anchorage and bracing. | | | LMH; PR-LMH. | | | | LSS-2 Flexible Couplings. | | | | HR-not required; LS-LMH; | Further investigation is required to review fire suppression for flexible couplings. | | | PR-LMH. | | | | HM-5 Flexible Couplings. | Further investigation is required to locate flexible couplings on hazardous material | | | HR-LMH; LS-LMH; PR- | ductwork/piping. | | | LMH. | uctwork/piping. | | | LF-1 Independent Support. | | | | HR-not required; LS-MH; PR- | Further investigation is required to review the support system of light fixtures. | | | MH. | | | | CG-8 Overhead Glazing. HR- | Further investigation is required to verify detailing of glazing panes. | | | not required; LS-MH; PR-MH. | | | | M-1 Ties. HR-not required; | Further investigation is required to verify detailing of masonry veneer ties. | | | LS-LMH; PR-LMH. | | | | M-3 Weakened Planes. HR- | | | | not required; LS-LMH; PR- | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | | LMH. | | | | PCOA-2 Canopies. HR-not | Further investigation is required to verify anchorage of canopies at exits to the main structure. | | | required; LS-LMH; PR-LMH. | | | | CF-3 Fall-Prone Contents. | Could not be visually verified. None observed. Further investigation is required to review | | | HR-not required; LS-H; PR-H. | anchorage of fall-prone contents. | | | ME-1 Fall-Prone Equipment. | Further investigation is required to review anchorage of fall-prone equipment. | | | HR-not required; LS-H; PR-H. | | | | ME-2 In-Line Equipment. HR- | Further investigation is required to review vertical support and lateral bracing of equipment. | | | not required; LS-H; PR-H. | | | | EL-1 Retainer Guards. HR-not | Further investigation is required to verify elevator sheaves and drums have cable retainer guards. | | | required; LS-H; PR-H. | | | | EL-2 Retainer Plate. HR-not | Further investigation is required to verify proper installation of retainer plates. | | | required; LS-H; PR-H. | | | ### Photos: Figure 1-1. Prairie High School 400 Building - East Exterior Figure 1-2. Prairie High School 400 Building - North Exterior Figure 1-3. Prairie High School 400 Building - Northwest Exterior Figure 1-4. Large Exterior Glazing Panes in Hallway Figure 1-5. Inadequate Fire Sprinkler Penetration Clearance in Classroom, Typical Throughout Figure 1-6. Typical Classroom. Seismic Bracing of Light Fixtures is Unknown. Figure 1-7. Office with Unbraced Tall, Narrow Contents Figure 1-8. OSB Sheathing over TJI Joists Floor Framing Figure 1-9. Fire Riser. Bracing of Fire Suppression Piping is Unknown. Figure 1-10. Elevator with Unknown Detailing ## Battle Ground, Prairie High School, 400 Building ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---------| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | X | | | | | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | X | | | #### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | X | | | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | X | | | | | | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | X | | | |----------|--|---|--|--| | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | X | | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary:
Sec. A.2.2.7) | X | | | # Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ## **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Very low liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | ## 17-6 Collapse Prevention Structural Checklist for Building Type W2 Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: Structural panel sheathing – 1,000 lb/ft; Diagonal sheathing – 700 lb/ft; Straight sheathing – 100 lb/ft; All other conditions – 100 lb/ft. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.7.1) | | X | | | Pseudo shear stress is greater
than 1000 plf. The building
likely requires wood shear
wall strengthening. Further
investigation is required. | | Stucco (Exterior
Plaster) Shear Walls | Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.2) | | | X | | | | Gypsum Wallboard or
Plaster Shear Walls | Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.3) | | | X | | | | Narrow Wood Shear
Walls | Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.4) | X | | | | | | Walls Connected
Through Floors | Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Tier 2: Sec. 5.5.3.6.2; Commentary: Sec. A.3.2.7.5) | X | | | | | | Hillside Site | For structures that are taller on at least one side
by more than one-half story because of a sloping
site, all shear walls on the downhill slope have
an aspect ratio less than 1-to-1. (Tier 2: Sec.
5.5.3.6.3; Commentary: Sec. A.3.2.7.6) | | | X | | | | Cripple Walls | Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Tier 2: Sec. 5.5.3.6.4; Commentary: Sec. A.3.2.7.7) | | | X | | | | | Walls with openings greater than 80% of the | | | | | |----------|---|--|---|--|--| | | length are braced with wood structural panel | | | | | | | shear walls with aspect ratios of not more than | | | | | | Openings | 1.5-to-1 or are supported by adjacent | | X | | | | | construction through positive ties capable of | | | | | | | transferring the seismic forces. (Tier 2: Sec. | | | | | | | 5.5.3.6.5; Commentary: Sec. A.3.2.7.8) | | | | | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------------|---|---|----|-----|---|---------| | Wood Posts | There is a positive connection of wood posts to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.3) | X | | | | | | Wood Sills | All wood sills are bolted to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.4) | X | | | | | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | X | | | | | # High Seismicity (Complete the Following Items in Addition to the Items for Low & Moderate Seismicity) #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---------| | | Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable edge and end distance provided for wood and concrete. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.7) | X | | | | | ### **Diaphragms** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | Diaphragm Continuity | The diaphragms are not composed of split-level floors and do not have expansion joints. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.1) | X | | | | | | Roof Chord Continuity | All chord elements are continuous, regardless of changes in roof elevation. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.3) | X | | | | | | Diaphragm
Reinforcement at
Openings | There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Tier 2: Sec. 5.6.1.5; Commentary: Sec. A.4.1.8) | | | X | | | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | | X | | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | X | | | | | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | X | | Unblocked diaphragm has horizontal spans over 40
feet. Diaphragm strengthening including additional nailing, blocking, and strapping may be appropriate to mitigate seismic risk. | |--|--|---|---|--|---| | Other Diaphragms | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | | | # Battle Ground, Prairie High School, 400 Building ## 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | | X | Further investigation is required to review fire suppression anchorage and bracing. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | | X | Further investigation is required to review fire suppression for flexible couplings. | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | X | | | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler heads. | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---------| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | | X | | | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | X | | | |--|--|---|---|---|---| | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | X | | | Insufficient protection (shutoff valves or other devices) to limit spills/leaks from piping containing hazardous materials. Installation of shutoff valves may be appropriate to limit hazardous material spills. | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | | X | Further investigation is required to locate flexible couplings on hazardous material ductwork/piping. | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | | ### **Partitions** | | | | | | | T | |-------------------------|---|---|----|-----|---|---------------------------| | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | | | Unreinforced masonry or hollow-clay tile | | | | | | | P-1 Unreinforced | partitions are braced at a spacing of at most 10 ft | | | | | | | Masonry. HR-LMH; LS- | (3.0 m) in Low or Moderate Seismicity, or at | | | X | | | | LMH; PR-LMH. | most 6 ft (1.8 m) in High Seismicity. (Tier 2: | | | | | | | | Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | | | | | P-2 Heavy Partitions | The tops of masonry or hollow-clay tile | | | | | | | Supported by Ceilings. | partitions are not laterally supported by an | | | X | X | | | HR-LMH; LS-LMH; PR- | integrated ceiling system. (Tier 2: Sec. 13.6.2; | | | | | | | LMH. | Commentary: Sec. A.7.2.1) | | | | | | | | Rigid cementitious partitions are detailed to | | | | | | | P-3 Drift. HR-not | accommodate the following drift ratios: in steel | | | | | | | required; LS-MH; PR- | moment frame, concrete moment frame, and | | | X | | | | MH. | wood frame buildings, 0.02; in other buildings, | | | Λ | | | | IVITI. | 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. | | | | | | | | A.7.1.2) | | | | | | | P-4 Light Partitions | The tops of gypsum board partitions are not | | | | | Non applicable due to | | Supported by Ceilings. | laterally supported by an integrated ceiling | | | v | X | Non-applicable due to | | HR-not required; LS-not | system. (Tier 2: Sec. 13.6.2; Commentary: Sec. | | | Λ | | ASCE 41 Performance | | required; PR-MH. | A.7.2.1) | | | | | Level: "Life Safety (LS)" | | P-5 Structural Separations. HR-not required; LS-not required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |--|--|--|---|---| | P-6 Tops. HR-not required; LS-not required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec.
13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Acoustical tile or lay-in panel ceilings have | | | | |-------------------------|---|--|----|---------------------------| | C-7 Seismic Joints. HR- | seismic separation joints such that each | | | Non-applicable due to | | not required: LS-not | continuous portion of the ceiling is no more than | | X | ASCE 41 Performance | | required; PR-H. | 2,500 ft2 (232.3 m2) and has a ratio of long-to- | | 21 | Level: "Life Safety (LS)" | | required, 11t 11. | short dimension no more than 4-to-1. (Tier 2: | | | Eeven. Elie suiety (Es) | | | Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | | ## **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system of light fixtures. | | LF-2 Pendant Supports.
HR-not required; LS-not
required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | Х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|-------------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | No cladding | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | X | No cladding | |--|--|---|-------------| | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | х | No cladding | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | X | No cladding | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | Х | No cladding | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | X | No cladding | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | X | No cladding | | | Glazing panes of any size in curtain walls and | | | | |------------------------|---|--|---|------------------------------| | | individual interior or exterior panes more than | | | | | CG-8 Overhead Glazing. | 16 ft2 (1.5 m2) in area are laminated annealed | | | Further investigation is | | HR-not required; LS- | or laminated heat-strengthened glass and are | | X | required to verify detailing | | MH; PR-MH. | detailed to remain in the frame when cracked. | | | of glazing panes. | | | (Tier 2: Sec. 13.6.1.5; Commentary: Sec. | | | | | | A.7.4.8) | | | | ### **Masonry Veneer** | wiasum y veneer | | | 1 | | | | |---
--|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | | X | Further investigation is required to verify detailing of masonry veneer ties. | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | | X | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | Wood studs | | M-6 Anchorage. HR-not
required; LS-MH; PR-
MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | Wood studs | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | | X | Further investigation is required to verify anchorage of canopies at exits to the main structure. | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | X | | | ## **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | #### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | X | | | | S-2 Stair Details. HR-not required; LS-LMH; PR-LMH. | The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | X | | | ### **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | | X | Could not be visually verified. None observed. Further investigation is required to review anchorage of fall-prone contents. | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due
to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended | Items suspended without lateral bracing are free | | | | |------------------|--|--|---|---------------------------| | Contents. HR-not | to swing from or move with the structure from | | | Non-applicable due to | | required; LS-not | which they are suspended without damaging | | X | ASCE 41 Performance | | required; PR-H. | themselves or adjoining components. (Tier 2: | | | Level: "Life Safety (LS)" | | required; PK-II. | Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | | ### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | | X | Further investigation is required to review anchorage of fall-prone equipment. | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | X | Further investigation is required to review vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | X | | | Anchorage is required for tall narrow equipment more than six feet high to provide overturning restraint. | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-9 Conduit
Couplings. HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Elevators | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|--| | | Sheaves and drums have cable retainer guards. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.1) | | | | X | Further investigation is required to verify elevator sheaves and drums have cable retainer guards. | | | A retainer plate is present at the top and bottom of both car and counterweight. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.2) | | | | X | Further investigation is required to verify proper installation of retainer plates. | | EL-3 Elevator Equipment. HR-not required; LS-not required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|---|---|---| | EL-4 Seismic Switch. HR-not required; LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the
requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | Non-applicable due to ASCE 41 Performance Level: "Life Safety (LS)" | | EL-7 Brackets. HR-not
required; LS-not
required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | Non-applicable due to ASCE 41 Performance Level: "Life Safety (LS)" | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | Non-applicable due to ASCE 41 Performance Level: "Life Safety (LS)" | # 1. Battle Ground, Prairie High School, 500 Building ### 1.1 Building Description Building Name: 500 Building Facility Name: Prairie High School District Name: Battle Ground ICOS Latitude: 45.705 ICOS Longitude: -122.555 **ICOS** County/District ID: 6119 ICOS Building ID: 11537 ASCE 41 Bldg Type: RM1 Enrollment: 1,577 Gross Sq. Ft.: 9,052 Year Built: 1979 Number of Stories: 1 S_{XS BSE-2E}: 0.827 S_{X1 BSE-2E}: 0.518 ASCE 41 Level of Seismicity: Site Class: D V_{S30}(m/s): 297 Liquefaction Potential: Very Low Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers The Prairie High School 500 Building is a one-story reinforced masonry structure constructed on level ground and located in Brush Prairie, Washington. The building is rectangular in plan, roughly 140 feet by 64 feet, with a maximum roof height of around 18 feet at the ridge. The building was originally constructed in 1979. The building construction consists of precast concrete columns and reinforced masonry walls. The roof system is a flexible plywood diaphragm supported by wood framing. There is a mechanical mezzanine level with a floor system consisting of a concrete topping slab over plywood sheathing and wood framing. The ground floor structure is a concrete slab-on-grade. The building shares the site with nine other Prairie High School buildings. The 500 Building is directly west of the 400 Building. ### 1.1.1 Building Use The Prairie High School 500 Building is the Social Studies Classroom Building. It includes classrooms and administrative offices. The high school has over 1,570 student occupants. ### 1.1.2 Structural System Table 1.1-1. Structural System Description of Prairie High School | Structural System | Description | | | | | |---------------------|---|--|--|--|--| | Character and Deepf | The structural roof consists of ¾-inch plywood sheathing over wood framing | | | | | | Structural Roof | (including glulam girders, TJI joists, and solid-sawn joists). | | | | | | | The floor system is a concrete slab-on-grade. The mezzanine floor level consists | | | | | | Structural Floor(s) | of a 2.5-inch concrete slab over 5/8-inch plywood sheathing supported by 2x | | | | | | | wood joists. | | | | | | Foundations | The foundation consists of spread footings tied together with grade beams. There | | | | | | roundations | are wood piles underneath the footings. | | | | | | | The roof framing spans between exterior masonry walls. The exterior masonry | | | | | | Gravity System | walls span between precast concrete columns. There are interior steel columns | | | | | | | supporting the glulam girders. | | | | | | Lateral System | The lateral forces are resisted by the plywood roof diaphragm and transferred | | | | | | Lateral System | into the exterior masonry walls in both the transverse and longitudinal directions. | | | | | ### 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of Prairie High School | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | # 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Battle Ground Prairie High School 500 Building | Deficiency | Description | |-------------------|---| | Reinforcing Steel | Reinforcing steel spacing is greater than 48 inches. The building's masonry walls likely require strengthening, | | | such as FRP and/or steel strongbacks. Further investigation is required. | | Wall Anchorage | Out-of-plane wall anchorage is not adequate. Additional tension ties, blocking, strapping, and diaphragm | | Wall Alleholage | nailing is required along the masonry walls. | | Wood Lodoons | Connections that induce cross-grain bending in wood ledgers are present. Strengthening of connection, such as | | Wood Ledgers | adding blocking and anchor straps, may be appropriate to mitigate seismic risk. | | | The building does not have continuous cross ties between diaphragm chords. Diaphragm strengthening may be | | Cross Ties | appropriate to mitigate seismic risk through the addition of new cross ties between diaphragm chords or adding | | | strap plates to connect the existing framing members together. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Battle Ground Prairie High School 500 Building | Unknown Item | Description | | | | | | |------------------------------|---|--|--|--|--|--| | | Sill plate nailing is unknown and compliance of this item could not be visually verified. This evaluation item is | | | | | | | Mezzanines | likely non-compliant due to the building's age. This item requires further investigation to make a final | | | | | | | | determination on its compliance and to develop a mitigation recommendation, if necessary. | | | | | | | | The liquefaction potential of site soils is unknown at this time given available information. Very low | | | | | | | Liquefaction | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | | | | | | a licensed geotechnical engineer to determine liquefaction potential. | | | | | | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | | | | | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | | | | | | Rupture | expected surface fault ruptures. | | | | | | | C4: CC C W-11 | This evaluation item is unknown and could not be visually verified. This item requires further field | | | | | | | Stiffness of Wall
Anchors | investigation to make a final determination on its compliance and to develop a mitigation recommendation, if | | | | | | | Allehois | necessary. | | | | | | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Battle Ground Prairie High School 500 Building | Deficiency | Description Natural gas. Piping/ductwork not adequately protected from damage that could potentially allow release of hazardous material. Hazardous material piping should be braced to the structure. | | | | | | | |---
--|--|--|--|--|--|--| | HM-3 Hazardous Material
Distribution. HR-MH; LS-
MH; PR-MH. | | | | | | | | | HM-4 Shutoff Valves. HR-MH; LS-MH; PR-MH. | None observed. Insufficient protection (shutoff valves or other devices) to limit spills/leaks from piping containing hazardous materials. Installation of shutoff valves may be appropriate to limit mazardous material spills. | | | | | | | | HM-5 Flexible Couplings.
HR-LMH; LS-LMH; PR-
LMH. | None observed. Flexible couplings not noted on hazardous material piping/ductwork. Installation of flexible couplings may be appropriate. | | | | | | | | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | | | | | | | ME-3 Tall Narrow Equipment.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow equipment more than six feet high to provide overturning restraint. | | | | | | | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Battle Ground Prairie High School 500 Building | Unknown Item | Description | | | | | | | |-----------------------------|--|--|--|--|--|--|--| | LF-1 Independent Support. | | | | | | | | | HR-not required; LS-MH; PR- | Further investigation is required to review the support system for light fixtures. | | | | | | | | MH. | | | | | | | | | ME-2 In-Line Equipment. HR- | Further investigation is required to review vertical support and lateral bracing of equipment. | | | | | | | | not required; LS-H; PR-H. | | | | | | | | Figure 1-1. Prairie High School 500 Building - Northwest Exterior Figure 1-2. Prairie High School 500 Building - Southwest Exterior Figure 1-3. Prairie High School 500 Building - North Exterior Figure 1-4. East Covered Walkway Figure 1-5. Masonry over Precast Column at Exterior As-Built Condition Versus Precast Concrete Beam in Drawings Figure 1-6. Masonry over Precast Column at Interior Figure 1-7. Typical Classroom with Unknown Light Fixture Bracing Figure 1-8. Wood-Framed Gable Wall above Masonry Wall Figure 1-9. Glulam Beam to Masonry Wall Connection Figure 1-10. Wood Roof Framing to Masonry Wall Connection at Corner ## Battle Ground, Prairie High School, 500 Building # 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|--| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | X | | | | | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | | х | Sill plate nailing is unknown and compliance of this item could not be visually verified. This evaluation item is likely non-compliant due to the building's age. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | | | X | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | | X | | |-------------------------|--|---|---|--| | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | | | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | # Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ## **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Very low liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | | | | | | | Requires further | |-----------------------
---|--|--|--|---|-----------------------------| | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | | investigation by a licensed | | | | | | | v | geotechnical engineer to | | | | | | | Λ | determine whether site is | | | | | | | | near locations of expected | | | | | | | | surface fault ruptures. | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ## **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | # 17-34 Collapse Prevention Structural Checklist for Building Types RM1 and RM2 Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ## Low and Moderate Seismicity ### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|--|---|----|-----|---|--| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 70 lb/in.2 (0.48 MPa). (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.4.1) | X | | | | | | Reinforcing Steel | The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in. (1220 mm), and all vertical bars extend to the top of the walls. (Tier 2: Sec. 5.5.3.1.3; Commentary: Sec. A.3.2.4.2) | | X | | | Reinforcing steel spacing is greater than 48 inches. The building's masonry walls likely require strengthening, such as FRP and/or steel strongbacks. Further investigation is required. | ### **Stiff Diaphragms** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | Topping Slab | Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab. (Tier 2: Sec. 5.6.4; Commentary: Sec. A.4.5.1) | | | X | | | ### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Wall Anchorage | Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. 5.7.1.1; Commentary: Sec. A.5.1.1) | | X | | | Out-of-plane wall anchorage is not adequate. Additional tension ties, blocking, strapping, and diaphragm nailing is required along the masonry walls. | | Wood Ledgers | The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Tier 2: Sec. 5.7.1.3; Commentary: Sec. A.5.1.2) | | X | | Connections that induce cross-grain bending in wood ledgers are present. Strengthening of connection, such as adding blocking and anchor straps, may be appropriate to mitigate seismic risk. | |------------------------------------|---|---|---|---|--| | Transfer to Shear Walls | Diaphragms are connected for transfer of seismic forces to the shear walls. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.1) | X | | | | | Topping Slab to Walls
or Frames | Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.) | | | X | | | Foundation Dowels | Wall reinforcement is doweled into the foundation. (Tier 2: Sec. 5.7.3.4; Commentary: Sec. A.5.3.5) | X | | | | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | X | | | | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ## **Stiff Diaphragms** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |----------------------------|--|---|----|-----|---|---------| | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | | X | | | | 1 0 | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | | X | | | ## Flexible Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С |] | NC | N/A | U | COMMENT | |-----------------|--|---|---|----|-----|---|---| | Cross Ties | There are continuous cross ties between diaphragm chords. (Tier 2: Sec. 5.6.1.2; Commentary: Sec. A.4.1.2) | | | X | | | The building does not have continuous cross ties between diaphragm chords. Diaphragm strengthening may be appropriate to mitigate seismic risk through the addition of new cross ties between diaphragm chords or adding strap plates to connect the existing framing members together. | | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | X | | |--|---|---|---|--| | Openings at Exterior
Masonry Shear Walls | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | X | | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | X | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal
sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | X | | | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4 to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | X | | | Other Diaphragms | Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | | ## Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------------|---|---|----|-----|---|--| | Stiffness of Wall
Anchors | Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. (3 mm) before engagement of the anchors. (Tier 2: Sec. 5.7.1.2; Commentary: Sec. A.5.1.4) | | | | | This evaluation item is unknown and could not be visually verified. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | # Battle Ground, Prairie High School, 500 Building # 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High ### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | X | | No fire suppression | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | X | | | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | | X | | | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---------| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | | X | | | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | X | | Natural gas. Piping/ductwork not adequately protected from damage that could potentially allow release of hazardous material. Hazardous material piping should be braced to the structure. | |--|--|---|---|---| | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | X | | None observed. Insufficient protection (shutoff valves or other devices) to limit spills/leaks from piping containing hazardous materials. Installation of shutoff valves may be appropriate to limit hazardous material spills. | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | X | | None observed. Flexible couplings not noted on hazardous material piping/ductwork. Installation of flexible couplings may be appropriate. | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | ## **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---------| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | X | | |---|--|--|---|---| | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural Separations. HR-not required; LS-not required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-6 Tops. HR-not required; LS-not required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # Ceilings | Cennigs | | | | | | T | |---
---|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|---|--|---|---| | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. | | LF-2 Pendant Supports. HR-not required; LS-not required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | Х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|-------------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | No cladding | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | No cladding | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | | Х | | No cladding | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | | X | | No cladding | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | | X | | No cladding | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | X | No cladding | |--|--|--|---|-------------| | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | No cladding | | CG-8 Overhead
Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | | X | No cladding | # **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|-----------| | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | No veneer | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | No veneer | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | No veneer | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | No veneer | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | No veneer | | M-6 Anchorage. HR-not
required; LS-MH; PR-
MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | No veneer | | required; LS-not | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier | | X | No veneer | |--|--|--|---|-----------| | required; PR-MH. | 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | X | No veneer | # Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | X | | | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | X | | | ## **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC 2 Anchorago IID | Masonry chimneys are anchored at each floor | | | | | |---|---|--|---|--|--| | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | X | | | ### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---------------------------|---|---|----|-----|---|---------| | | Hollow-clay tile or unreinforced masonry walls | | | | | | | | around stair enclosures are restrained out of | | | | | | | | plane and have height-to-thickness ratios not | | | | | | | S-1 Stair Enclosures. | greater than the following: for Life Safety in | | | | | | | HR-not required; LS- | Low or Moderate Seismicity, 15-to-1; for Life | | | X | | | | LMH; PR-LMH. | Safety in High Seismicity and for Position | | | | | | | | Retention in any seismicity, 12-to-1. (Tier 2: | | | | | | | | Sec. 13.6.2, 13.6.8; Commentary: Sec. | | | | | | | | A.7.10.1) | | | | | | | | The connection between the stairs and the | | | | | | | | structure does not rely on post-installed anchors | | | | | | | | in concrete or masonry, and the stair details are | | | | | | | S-2 Stair Details, HR-not | capable of accommodating the drift calculated | | | | | | | required; LS-LMH; PR- | using the Quick Check procedure of Section | | | X | | | | LMH. | 4.4.3.1 for moment-frame structures or 0.5 in. | | | Λ | | | | LIVIII. | for all other structures without including any | | | | | | | | lateral stiffness contribution from the stairs. | | | | | | | | (Tier 2: Sec. 13.6.8; Commentary: Sec. | | | | | | | | A.7.10.2) | | | | | | # **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | None observed | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec.
A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |--|---|--|---|---| | CF-6 Suspended
Contents. HR-not
required; LS-not
required; PR-H. | Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | X | | None observed | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | X | Further investigation is required to review vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | X | | | Anchorage is required for tall narrow equipment more than six feet high to provide overturning restraint. | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Conduit greater than 2.5 in. (64 mm) trade size | | | | |-------------------|---|--|---|---------------------------| | ME-9 Conduit | that is attached to panels, cabinets, or other | | | Non-applicable due to | | Couplings. HR-not | equipment and is subject to relative seismic | | X | ASCE 41 Performance | | required; LS-not | displacement has flexible couplings or | | Λ | | | required; PR-H. | connections. (Tier 2: Sec. 13.7.8; Commentary: | | | Level: "Life Safety (LS)" | | | Sec. A.7.12.12) | | | | # Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | PP-1 Flexible Couplings.
HR-not required; LS-not required; PR-H. | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)"a | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Elevators** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------|---|---|----|-----|---|--------------| | EL-1 Retainer Guards. | Sheaves and drums have cable retainer guards. | | | | | | | HR-not required; LS-H; | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | | X | | No elevators | | PR-H. | A.7.16.1) | | | | | | | | , | | | |---|---|---|--------------| | EL-2 Retainer Plate. HR-
not required; LS-H; PR-
H. | A retainer plate is present at the top and bottom of both car and counterweight. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.2) | X | No elevators | | EL-3 Elevator
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | X | No elevators | | EL-4 Seismic Switch. HR-not required; LS-not
required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | No elevators | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | No elevators | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | No elevators | | EL-7 Brackets. HR-not required; LS-not required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | No elevators | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | No elevators | | | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | No elevators | # 1. Battle Ground, Prairie High School, 600 Building ## 1.1 Building Description Building Name: 600 Building Facility Name: Prairie High School District Name: Battle Ground ICOS Latitude: 45.705 ICOS Longitude: -122.555 **ICOS** County/District ID: 6119 ICOS Building ID: 10577 ASCE 41 Bldg Type: RM1 Enrollment: 1,577 Gross Sq. Ft.: 10,725 Year Built: 1979 Number of Stories: 1 S_{XS BSE-2E}: 0.827 S_{X1 BSE-2E}: 0.518 ASCE 41 Level of Seismicity: Site Class: D V_{S30}(m/s): 297 Liquefaction Potential: Very Low Evaluating Firm: WRK Engineers Tsunami Risk: None Structural Drawings Available: Yes The Prairie High School 600 Building is a one-story reinforced masonry structure constructed on level ground and located in Brush Prairie, Washington. The building is L-shaped in plan, roughly 128 feet by 100 feet overall, with a maximum roof height of around 18 feet at the ridge. The building was originally constructed in 1979. The building construction consists of precast concrete columns and reinforced masonry walls. The roof system is a flexible plywood diaphragm supported by wood framing. There is a mechanical mezzanine level with a floor system consisting of a concrete topping slab over plywood sheathing and wood framing. The ground floor structure is a concrete slab-on-grade. The building shares the site with nine other Prairie High School buildings. The 600 Building is directly south of the 500 Building. ## 1.1.1 Building Use The Prairie High School 600 Building is the Math/Science Classroom Building. It includes classrooms and administrative offices. The high school has over 1,570 student occupants. ## 1.1.2 Structural System Table 1.1-1. Structural System Description of Prairie High School | Structural System | Description | |---------------------|---| | C41 D f | The structural roof consists of 3/4-inch plywood sheathing over wood framing | | Structural Roof | (including glulam girders, TJI joists, and solid-sawn joists). | | | The floor system is a concrete slab-on-grade. The mezzanine floor level consists | | Structural Floor(s) | of a 2.5-inch concrete slab over 5/8-inch plywood sheathing supported by 2x | | | wood joists. | | Foundations | The foundation consists of spread footings tied together with grade beams. There | | roundations | are wood piles underneath the footings. | | | The roof framing spans between exterior masonry walls. The exterior masonry | | Gravity System | walls span between precast concrete columns. There are interior steel columns | | | supporting the glulam girders. | | Lotaral System | The lateral forces are resisted by the plywood roof diaphragm and transferred | | Lateral System | into the exterior masonry walls in both the transverse and longitudinal directions. | # 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of Prairie High School | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | # 1.2 Seismic Evaluation Findings ### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Battle Ground Prairie High School 600 Building | Deficiency | Description | |-------------------|---| | Dainfanaina Staal | Reinforcing steel spacing is greater than 48 inches. The building's masonry walls likely require strengthening, | | Reinforcing Steel | such as FRP and/or steel strongbacks. Further investigation is required. | | Wall Anaharaga | Out-of-plane wall anchorage is not adequate. Additional tension ties, blocking, strapping, and diaphragm | | Wall Anchorage | nailing is required along the masonry walls. | | Wood Lodgers | Connections that induce cross-grain bending in wood ledgers are present. Strengthening of connections, such as | | Wood Ledgers | adding blocking and anchor straps, may be appropriate to mitigate seismic risk. | | | The building does not have continuous cross ties between diaphragm chords. Diaphragm strengthening may be | | Cross Ties | appropriate to mitigate seismic risk through the addition of new cross ties between diaphragm chords or adding | | | strap plates to connect the existing framing members together. | ### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Battle Ground Prairie High School 600 Building | Unknown Item | Description | | | | | | |------------------------------|---|--|--|--|--|--| | | Sill plate nailing is unknown and compliance of this item could not be visually verified. This evaluation item is | | | | | | | Mezzanines | likely non-compliant due to the building's age. This item requires further field investigation to make a final | | | | | | | | determination on its compliance and to develop a mitigation recommendation, if necessary. | | | | | | | | The liquefaction potential of site soils is unknown at this time given available information. Very low | | | | | | | Liquefaction | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | | | | | | a licensed geotechnical engineer to determine liquefaction potential. | | | | | | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | | | | | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | | | | | | Rupture | expected surface fault ruptures. | | | | | | | C4: CC | This evaluation item is unknown and could not be visually verified. This item requires further field | | | | | | | Stiffness of Wall
Anchors | investigation to make a final determination on its compliance and to develop a mitigation recommendation, if | | | | | | | Anchors | necessary. | | | | | | ### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Battle Ground Prairie High School 600 Building | Deficiency | Description | |---|--| | HM-2 Hazardous Material
Storage. HR-LMH; LS-LMH;
PR-LMH. | Science supplies. Inadequate restraints for breakable containers storing hazardous material. Provide latched doors, shelf lips, or wires. | | HM-3 Hazardous Material
Distribution. HR-MH; LS-
MH; PR-MH. | Natural gas. Piping/ductwork not adequately protected from damage that could potentially allow release of hazardous material. Natural gas piping should be
adequately braced to the structure. | | HM-4 Shutoff Valves. HR-MH; LS-MH; PR-MH. | None observed. Insufficient protection (shutoff valves or other devices) to limit spills/leaks from piping containing hazardous materials. Installation of shutoff valves may be appropriate to limit hazardous material spills. | | HM-5 Flexible Couplings.
HR-LMH; LS-LMH; PR-
LMH. | None observed. Flexible couplings not noted on hazardous material piping/ductwork. Installation of flexible couplings may be appropriate. | | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | ME-3 Tall Narrow Equipment.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow equipment more than six feet high to provide overturning restraint. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Battle Ground Prairie High School 600 Building | Unknown Item | Description | | | | | | |-----------------------------|--|--|--|--|--|--| | LF-1 Independent Support. | | | | | | | | HR-not required; LS-MH; PR- | Further investigation is required to review the support system for light fixtures. | | | | | | | MH. | | | | | | | | ME-2 In-Line Equipment. HR- | | | | | | | | not required; LS-H; PR-H. | Further investigation is required to review vertical support and lateral bracing of equipment. | | | | | | Figure 1-1. Prairie High School 600 Building - North Exterior Figure 1-2. Prairie High School 600 Building - West Exterior Figure 1-3. Prairie High School 600 Building - Southwest Exterior Figure 1-4. Prairie High School 600 Building - Southeast Exterior Figure 1-5. Science Classroom with Unknown Light Fixture Bracing Figure 1-6. Science Classroom Figure 1-7. Mechanical Equipment, Typical Figure 1-8. Unbraced Tall Narrow Contents, Typical Figure 1-9. Unrestrained Breakable Containers, Typical Figure 1-10. Natural Gas without Shutoff Valve # Battle Ground, Prairie High School, 600 Building # 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ## **Low Seismicity** ### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|--| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | X | | | | | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | | X | Sill plate nailing is unknown and compliance of this item could not be visually verified. This evaluation item is likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ## **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | | | X | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | | X | | |-------------------------|--|---|---|--| | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | | | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | # Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) # **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Very low liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | | | | | | Requires further | |-----------------------|---|--|-----------------------------|----|----------------------------| | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | investigation by a licensed | | | | | | | | Y | geotechnical engineer
to | | | | | | 71 | determine whether site is | | | | | | | near locations of expected | | | | | | | surface fault ruptures. | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ## **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | # 17-34 Collapse Prevention Structural Checklist for Building Types RM1 and RM2 Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ## Low and Moderate Seismicity ### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|--|---|----|-----|---|--| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 70 lb/in.2 (0.48 MPa). (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.4.1) | X | | | | | | Reinforcing Steel | The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in. (1220 mm), and all vertical bars extend to the top of the walls. (Tier 2: Sec. 5.5.3.1.3; Commentary: Sec. A.3.2.4.2) | | X | | | Reinforcing steel spacing is greater than 48 inches. The building's masonry walls likely require strengthening, such as FRP and/or steel strongbacks. Further investigation is required. | ## **Stiff Diaphragms** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | Tonning Slah | Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab. (Tier 2: Sec. 5.6.4; Commentary: Sec. A.4.5.1) | | | X | | | ### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Wall Anchorage | Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. 5.7.1.1; Commentary: Sec. A.5.1.1) | | X | | | Out-of-plane wall anchorage is not adequate. Additional tension ties, blocking, strapping, and diaphragm nailing is required along the masonry walls. | | Wood Ledgers | The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Tier 2: Sec. 5.7.1.3; Commentary: Sec. A.5.1.2) | | X | | Connections that induce cross-grain bending in wood ledgers are present. Strengthening of connections, such as adding blocking and anchor straps, may be appropriate to mitigate seismic risk. | |------------------------------------|---|---|---|---|---| | Transfer to Shear Walls | Diaphragms are connected for transfer of seismic forces to the shear walls. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.1) | X | | | | | Topping Slab to Walls
or Frames | Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.) | | | X | | | Foundation Dowels | Wall reinforcement is doweled into the foundation. (Tier 2: Sec. 5.7.3.4; Commentary: Sec. A.5.3.5) | X | | | | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | X | | | | # ${\bf High\ Seismicity}\ ({\bf Complete\ the\ Following\ Items\ in\ Addition\ to\ the\ Items\ for\ Low\ and\ Moderate\ Seismicity})$ ## **Stiff Diaphragms** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |----------------------------|--|---|----|-----|---|---------| | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | | X | | | | 1 0 | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | | X | | | ## Flexible Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NO | C N/A | U | COMMENT | |-----------------|--|---|----|-------|---|---| | Cross Ties | There are continuous cross ties between diaphragm chords. (Tier 2: Sec. 5.6.1.2; Commentary: Sec. A.4.1.2) | | X | | | The building does not have continuous cross ties between diaphragm chords. Diaphragm strengthening may be appropriate to mitigate seismic risk through the addition of new cross ties between diaphragm chords or adding strap plates to connect the existing framing members together. | | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | X | | |--|---|---|---|--| | Openings at Exterior
Masonry Shear Walls | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | X | | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | X | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | X | | | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4 to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | X | | | Other Diaphragms | Diaphragms do not consist of a system other
than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | | ## Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------------|---|---|----|-----|---|--| | Stiffness of Wall
Anchors | Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. (3 mm) before engagement of the anchors. (Tier 2: Sec. 5.7.1.2; Commentary: Sec. A.5.1.4) | | | | X | This evaluation item is unknown and could not be visually verified. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | # Battle Ground, Prairie High School, 600 Building # 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High ### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | X | | No fire suppression | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | X | | | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | | X | | | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | X | | | Science supplies. Inadequate restraints for breakable containers storing hazardous material. Provide latched doors, shelf lips, or wires. | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | X | | Natural gas. Piping/ductwork not adequately protected from damage that could potentially allow release of hazardous material. Natural gas piping should be adequately braced to the structure. | |--|--|---|---|---| | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | X | | None observed. Insufficient protection (shutoff valves or other devices) to limit spills/leaks from piping containing hazardous materials. Installation of shutoff valves may be appropriate to limit hazardous material spills. | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | X | | None observed. Flexible couplings not noted on hazardous material piping/ductwork. Installation of flexible couplings may be appropriate. | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | ## **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---------| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | X | | | |---|--|--|---|---------|--| | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | X | ASCE 41 | cable due to Performance fe Safety (LS)" | | P-5 Structural Separations. HR-not required; LS-not required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | ASCE 41 | cable due to Performance fe Safety (LS)" | | P-6 Tops. HR-not required; LS-not required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | ASCE 41 | cable due to Performance fe Safety (LS)" | ## Ceilings | Cennigs | | | | | | | |---
---|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|---|--|---|---| | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. | | LF-2 Pendant Supports. HR-not required; LS-not required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | Х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|-------------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | No cladding | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | No cladding | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | | Х | | No cladding | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | | X | | No cladding | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | | X | | No cladding | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | X | No cladding | |--|--|--|---|-------------| | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | No cladding | | CG-8
Overhead Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | | X | No cladding | ## **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|-----------| | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | No veneer | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | No veneer | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | No veneer | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | No veneer | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | No veneer | | M-6 Anchorage. HR-not
required; LS-MH; PR-
MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | No veneer | | M-7 Weep Holes. HR-not | In veneer anchored to stud walls, the veneer has | | | | |--|--|--|---|-----------| | required; LS-not | functioning weep holes and base flashing. (Tier | | X | No veneer | | required; PR-MH. | 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | | | M-8 Openings. HR-not
required; LS-not
required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | X | No veneer | ## Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | X | | | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | X | | | ### **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC 2 Anchorago IID | Masonry chimneys are anchored at each floor | | | | | |---|---|--|---|--|--| | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | X | | | ### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---------------------------|---|---|----|-----|---|---------| | | Hollow-clay tile or unreinforced masonry walls | | | | | | | | around stair enclosures are restrained out of | | | | | | | | plane and have height-to-thickness ratios not | | | | | | | S-1 Stair Enclosures. | greater than the following: for Life Safety in | | | | | | | HR-not required; LS- | Low or Moderate Seismicity, 15-to-1; for Life | | | X | | | | LMH; PR-LMH. | Safety in High Seismicity and for Position | | | | | | | | Retention in any seismicity, 12-to-1. (Tier 2: | | | | | | | | Sec. 13.6.2, 13.6.8; Commentary: Sec. | | | | | | | | A.7.10.1) | | | | | | | | The connection between the stairs and the | | | | | | | | structure does not rely on post-installed anchors | | | | | | | | in concrete or masonry, and the stair details are | | | | | | | S-2 Stair Details, HR-not | capable of accommodating the drift calculated | | | | | | | required; LS-LMH; PR- | using the Quick Check procedure of Section | | | X | | | | LMH. | 4.4.3.1 for moment-frame structures or 0.5 in. | | | Λ | | | | LIVIII. | for all other structures without including any | | | | | | | | lateral stiffness contribution from the stairs. | | | | | | | | (Tier 2: Sec. 13.6.8; Commentary: Sec. | | | | | | | | A.7.10.2) | | | | | | ## **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | None observed. | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm)
high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |--|---|--|---|---| | CF-6 Suspended
Contents. HR-not
required; LS-not
required; PR-H. | Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | X | | None observed. | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | X | Further investigation is required to review vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | X | | | Anchorage is required for tall narrow equipment more than six feet high to provide overturning restraint. | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Conduit greater than 2.5 in. (64 mm) trade size | | | | | |-------------------|---|--|---|---|---------------------------| | ME-9 Conduit | that is attached to panels, cabinets, or other | | | | Non-applicable due to | | Couplings. HR-not | equipment and is subject to relative seismic | | X | A | ASCE 41 Performance | | required; LS-not | displacement has flexible couplings or | | Λ | | | | required; PR-H. | connections. (Tier 2: Sec. 13.7.8; Commentary: | | | | Level: "Life Safety (LS)" | | | Sec. A.7.12.12) | | | | | ## Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Elevators** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------|---|---|----|-----|---|--------------| | EL-1 Retainer Guards. | Sheaves and drums have cable retainer guards. | | | | | | | HR-not required; LS-H; | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | | X | | No elevators | | PR-H. | A.7.16.1) | | | | | | | | , | | | |---|---|---|--------------| | EL-2 Retainer Plate. HR-
not required; LS-H; PR-
H. | A retainer plate is present at the top and bottom of both car and counterweight. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.2) | X | No elevators | | EL-3 Elevator
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | X | No elevators | | EL-4 Seismic Switch. HR-not required;
LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | No elevators | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | No elevators | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | No elevators | | EL-7 Brackets. HR-not required; LS-not required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | No elevators | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | No elevators | | | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | No elevators | ## 1. Battle Ground, River Homelink, Main Building ### 1.1 Building Description Building Name: Main Building Facility Name: River Homelink District Name: Battle Ground ICOS Latitude: 45.767 ICOS Longitude: -122.545 **ICOS** County/District ID: 6119 ICOS Building ID: 11747 ASCE 41 Bldg Type: W2 Enrollment: 966 Gross Sq. Ft.: 34,863 Year Built: 1980 Number of Stories: 2 S_{XS} BSE-2E: 0.818 S_{X1 BSE-2E}: 0.515 ASCE 41 Level of Seismicity: Site Class: D V_{S30}(m/s): 320 Liquefaction Potential: Very Low Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers The River Homelink main school building is a two-story wood-framed structure. The building is constructed on level ground and is located in Battle Ground, Washington. The 1980 building is 780 feet by 240 feet with a maximum roof height of 32 feet. Building construction consists of wood stud walls. The ground floor system is a concrete slab-on-grade. The roof system consists of premanufactured wood trusses and wood joists with a playwood sheathing diaphragm. The building shares the site with a playground, a gymnasium, a school building, a parking lot, and various outbuildings. ## 1.1.1 Building Use The River Homelink main school building includes classrooms and storage. The school has over 960 student occupants. ### 1.1.2 Structural System Table 1.1-1. Structural System Description of River Homelink | Structural System | Description | |---------------------|--| | Structural Roof | The main school building is comprised of premanufactured wood trusses with plywood sheathing. | | Structural Floor(s) | The ground level is a 4-inch concrete floor slab. | | Foundations | The wood stud walls are supported by continuous concrete wall footings. Steel columns are supported by concrete spread footings. | | Gravity System | The gravity system is composed of wood beams, wood-framed walls, and steel columns. | | Lateral System | The lateral system is wood shear walls with plywood sheathing. | ### 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of River Homelink | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | ## 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Battle Ground River Homelink Main Building | Deficiency | Description | |------------|-------------| |------------|-------------| The Tier 1 seismic evaluation performed for this school building could not confirm structural seismic deficiencies due to limited access for visual observation and/or lack of existing drawings available for review. Please refer to the next page of this report for the list of structural items marked as "unknown" and commentary indicating the need for further investigation or the likelihood of compliance or non-compliance based on the age of construction. ### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Battle Ground River Homelink Main Building | Unknown Item | Description | |-----------------------------|---| | Load Path | Roof diaphragm to shear wall connection is unknown because incomplete structural drawings are available. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Mezzanines | No structural details are available and compliance could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Liquefaction | The liquefaction potential of site soils is unknown at this time given available information. Very low liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault
Rupture | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | | Girder-Column
Connection | No structural details are available and compliance could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Battle Ground River Homelink Main Building | Deficiency | Description | |---|--| | LSS-3 Emergency Power. HR-
not required; LS-LMH; PR- | Inadequate anchoring/bracing of life-safety equipment. All life-safety equipment should be | | LMH. | anchored or braced to the structure of the foundation. | | LSS-5 Sprinkler Ceiling
Clearance. HR-not required;
LS-MH; PR-MH. | Inadequate penetration clearances at panelized ceilings for fire suppression devices. All life-safety equipment should be anchored or braced to the structure. | | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Anchorage required for tall narrow contents more than six feet high to provide overturning restraint. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Battle Ground
River Homelink Main Building | Unknown Item | Description | |------------------------------|--| | LSS-1 Fire Suppression | | | Piping. HR-not required; LS- | Further investigation is required to review fire suppression anchorage and bracing. | | LMH; PR-LMH. | | | LSS-2 Flexible Couplings. | | | HR-not required; LS-LMH; | Further investigation is required to review fire suppression for flexible couplings. | | PR-LMH. | | | LF-1 Independent Support. | | | HR-not required; LS-MH; PR- | Further investigation is required to review the support system for light fixtures. | | MH. | | | CG-8 Overhead Glazing. HR- | Further investigation is required to verify detailing of glazing panes. | | not required; LS-MH; PR-MH. | ruther investigation is required to verify detaining of grazing panes. | | M-1 Ties. HR-not required; | Further investigation is required to verify detailing of masonry veneer ties. | | LS-LMH; PR-LMH. | ruther investigation is required to verify detaining of masonly veheer ties. | | M-3 Weakened Planes. HR- | | | not required; LS-LMH; PR- | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | LMH. | | | CF-3 Fall-Prone Contents. | Further investigation is required to review the anchorage of fall-prone contents. | | HR-not required; LS-H; PR-H. | ruther investigation is required to review the anchorage of ran-profic contents. | | ME-1 Fall-Prone Equipment. | Further investigation is required to review the anchorage of fall-prone equipment. | | HR-not required; LS-H; PR-H. | Further investigation is required to review the anchorage of ran-profile equipment. | | ME-2 In-Line Equipment. HR- | Further investigation is required to review the vertical support and lateral bracing of equipment. | | not required; LS-H; PR-H. | Further investigation is required to review the vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow Equipment. | | | HR-not required; LS-H; PR- | Further investigation is required to review the anchorage of tall narrow equipment. | | MH. | | Figure 1-1. River Homelink - West Exterior Figure 1-2. River Homelink - South Exterior Canopy Figure 1-3. River Homelink - East Exterior Figure 1-4. Inadequate Fire Sprinkler Penetration Clearance, Typical Throughout Figure 1-5. Classroom with Unbraced Tall Narrow Contents, Typical Figure 1-6. Open Space in School Interior with Large Glazing Panes Figure 1-7. Wood Truss Roof Figure 1-8. Mechanical Room with Unbraced Piping Figure 1-9. Storage Room with Unbraced Tall Narrrow Contents Figure 1-10. Girder to Concrete Column Connection. Unknown Detailing. ## Battle Ground, River Homelink, Main Building ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### **Low Seismicity** ### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | | | X | Roof diaphragm to shear wall connection is unknown because incomplete structural drawings are available. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | | X | No structural details are available and compliance could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | • | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | | | X | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | | X | | |-------------------------|--|---|---|--| | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | | | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | ## Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ## **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Very low liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected | |-----------------------|---|--|---|--| | | | | | surface fault ruptures. | # $\textbf{High Seismicity}
\ (\textbf{Complete the Following Items in Addition to the Items for Low and Moderate Seismicity})$ ### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | ## 17-6 Collapse Prevention Structural Checklist for Building Type W2 Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### Low and Moderate Seismicity ### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---------| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: Structural panel sheathing – 1,000 lb/ft; Diagonal sheathing – 700 lb/ft; Straight sheathing – 100 lb/ft; All other conditions – 100 lb/ft. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.7.1) | X | | | | | | Stucco (Exterior
Plaster) Shear Walls | Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.2) | | | X | | | | Gypsum Wallboard or
Plaster Shear Walls | Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.3) | | | X | | | | Narrow Wood Shear
Walls | Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.4) | X | | | | | | Walls Connected
Through Floors | Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Tier 2: Sec. 5.5.3.6.2; Commentary: Sec. A.3.2.7.5) | | | X | | | | Hillside Site | For structures that are taller on at least one side
by more than one-half story because of a sloping
site, all shear walls on the downhill slope have
an aspect ratio less than 1-to-1. (Tier 2: Sec.
5.5.3.6.3; Commentary: Sec. A.3.2.7.6) | | | X | | | | Cripple Walls | Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Tier 2: Sec. 5.5.3.6.4; Commentary: Sec. A.3.2.7.7) | | | X | | | | | Walls with openings greater than 80% of the | | | | | |----------|---|--|---|--|--| | | length are braced with wood structural panel | | | | | | | shear walls with aspect ratios of not more than | | | | | | Openings | 1.5-to-1 or are supported by adjacent | | X | | | | | construction through positive ties capable of | | | | | | | transferring the seismic forces. (Tier 2: Sec. | | | | | | | 5.5.3.6.5; Commentary: Sec. A.3.2.7.8) | | | | | ### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------------|---|---|----|-----|---|---| | Wood Posts | There is a positive connection of wood posts to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.3) | X | | | | | | Wood Sills | All wood sills are bolted to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.4) | X | | | | | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | | | | X | No structural details are available and compliance could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | # $\label{lem:high-seismicity} \textbf{High Seismicity} \ \textbf{(Complete the Following Items in Addition to the Items for Low \& Moderate Seismicity)}$ ### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---------| | Wood Sill Bolts | Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable edge and end distance provided for wood and concrete. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.7) | X | | | | | ### Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | Diaphragm Continuity | The diaphragms are not composed of split-level floors and do not have expansion joints. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.1) | X | | | | | | Roof Chord Continuity | All chord elements are continuous, regardless of changes in roof elevation. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.3) | X | | | | | | Diaphragm
Reinforcement at
Openings | There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Tier 2: Sec. 5.6.1.5; Commentary: Sec. A.4.1.8) | | | X | | | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | | X | | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | X | | | |--|--|---|--|--| | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | X | | | | Other Diaphragms | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | | ## Battle Ground, River Homelink, Main Building ## 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High ### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | | X | Further investigation is required to review fire suppression anchorage and bracing. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | | X | Further investigation is required to review fire suppression for flexible couplings. | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. |
Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | X | | | Inadequate
anchoring/bracing of life-
safety equipment. All life-
safety equipment should be
anchored or braced to the
structure of the foundation. | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | X | | | Inadequate penetration clearances at panelized ceilings for fire suppression devices. All life-safety equipment should be anchored or braced to the structure. | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | HM-1 Hazardous | Equipment mounted on vibration isolators and | | | | | | | Material Equipment. HR- | containing hazardous material is equipped with | | | v | | | | LMH; LS-LMH; PR- | restraints or snubbers. (Tier 2: Sec. 13.7.1; | | | Λ | | | | LMH. | Commentary: Sec. A.7.12.2) | | | | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | X | | | |--|--|--|---|--|--| | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | X | | | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | | | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | | ## **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | | | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural Separations. HR-not required; LS-not required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |--|--|--|---|---| | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Acoustical tile or lay-in panel ceilings have | | | | |-------------------------|---|---|-----------------------|---------------------------| | C-7 Seismic Joints. HR- | continuous portion of the ceiling is no more than | | Non-applicable due to | | | not required: LS-not | | X | ASCE 41 Performance | | | required; PR-H. | 2,500 ft2 (232.3 m2) and has a ratio of long-to- | | 21 | Level: "Life Safety (LS)" | | required, 11t 11. | short dimension no more than 4-to-1. (Tier 2: | | | Eeven. Elie suiety (Es) | | | Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | | ## **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT |
--|--|---|----|-----|---|--| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. | | LF-2 Pendant Supports.
HR-not required; LS-not
required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | | |
 |
 | |--|--|------|------| | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | X | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | X | | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | X | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | Х | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | X | | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | X | | | | Glazing panes of any size in curtain walls and | | | | |------------------------|---|--|---|------------------------------| | | individual interior or exterior panes more than | | | | | CG-8 Overhead Glazing. | 16 ft2 (1.5 m2) in area are laminated annealed | | | Further investigation is | | HR-not required; LS- | or laminated heat-strengthened glass and are | | X | required to verify detailing | | MH; PR-MH. | detailed to remain in the frame when cracked. | | | of glazing panes. | | | (Tier 2: Sec. 13.6.1.5; Commentary: Sec. | | | | | | A.7.4.8) | | | | ## **Masonry Veneer** | wasoni y veneer | | | , | | | <u></u> | |---|--|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | | X | Further investigation is required to verify detailing of masonry veneer ties. | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | | X | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | | | required; LS-MH; PR-MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT |
--|--|---|----|-----|---|---------| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | X | | | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | X | | | ## **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | ### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | X | | | | S-2 Stair Details. HR-not required; LS-LMH; PR-LMH. | The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | X | | | ### **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Anchorage required for tall narrow contents more than six feet high to provide overturning restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | | X | Further investigation is required to review the anchorage of fall-prone contents. | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended | Items suspended without lateral bracing are free | | | | |------------------|--|--|---|---------------------------| | Contents. HR-not | to swing from or move with the structure from | | | Non-applicable due to | | required; LS-not | which they are suspended without damaging | | X | ASCE 41 Performance | | required; PR-H. | themselves or adjoining components. (Tier 2: | | | Level: "Life Safety (LS)" | | required; PK-II. | Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | | # **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | | X | Further investigation is required to review the anchorage of fall-prone equipment. | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | X | Further investigation is required to review the vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | | | X | Further investigation is required to review the anchorage of tall narrow equipment. | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal
restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-9 Conduit
Couplings. HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # Elevators | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--------------------------|---|---|----|-----|---|-------------| | EL-1 Retainer Guards. | Sheaves and drums have cable retainer guards. | | | | | | | HR-not required; LS-H; | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | | X | | No Elevator | | PR-H. | A.7.16.1) | | | | | | | EL-2 Retainer Plate. HR- | A retainer plate is present at the top and bottom | | | | | | | not required; LS-H; PR- | of both car and counterweight. (Tier 2: Sec. | | | X | | No Elevator | | H. | 13.7.11; Commentary: Sec. A.7.16.2) | | | | | | | EL-3 Elevator
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | X |] | No Elevator | |---|---|---|---|-------------| | EL-4 Seismic Switch. HR-not required; LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | 1 | No Elevator | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X |] | No Elevator | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | 1 | No Elevator | | EL-7 Brackets. HR-not
required; LS-not
required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X |] | No Elevator | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X |] | No Elevator | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | | X |] | No Elevator | This page intentionally left blank. **Note:** for seismic design category D, E & F, the flexible sprinkler hose fitting must accommodate at least $1^{\prime\prime}$ of ceiling movement without use of an oversized opening. Alternatively, the sprinkler head must have a $2^{\prime\prime}$ oversize ring or adapter that allows $1^{\prime\prime}$ movement in all directions. Figure G-1. Flexible Sprinkler Drop. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-2. End of Line Restraint. # **Partitions** Figure G-3. Mitigation Schemes for Bracing the Tops of Metal Stud Partitions Walls. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-4. Mitigation Schemes for Bracing the Tops of Metal Stud Partitions Walls. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Notes:** Glazed partition shown in full-height nonbearing stud wall. Nonstructural surround must be designed to provide in-plane and out-of-plane restraint for glazing assembly without delivering any loads to the glazing. Glass-to-frame clearance requirements are dependent on anticipated structural drift. Where partition is isolated from structural drift, clearance requirements are reduced. Refer to building code for specific requirements. Safety glass (laminated, tempered, etc.) will reduce the hazard in case of breakage during an earthquake. See Example 6.3.1.4 for related discussion. Figure G-5. Full-height Glazed Partition. Figure G-6. Full-height Heavy Partition. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-7. Typical Glass Block Panel Details. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # Ceilings Figure G-8. Suspension System for Acoustic Lay-in Panel Ceilings – Edge Conditions. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Compression strut shall not replace hanger wire. Compression strut consists of a steel section attached to main runner with 2 - #12 sheet metal screws and to structure with 2 - #12 screws to wood or 1/4" min. expansion anchor to structure. Size of strut is dependent on distance between ceiling and structure (I/r ≤ 200). A 1" diameter conduit can be used for up to 6', a 1-5/8" X 1-1/4" metal stud can be used for up to 10' Per DSA IR 25-5, ceiling areas less than 144 sq. ft, or fire rated ceilings less than 96 sq. ft., surrounded by walls braced to the
structure above do not require lateral bracing assemblies when they are attached to two adjacent walls. (ASTM E580 does not require lateral bracing assemblies for ceilings less than 1000 sq. ft.; see text.) Figure G-9. Suspension System for Acoustic Lay-in Panel Ceilings – General Bracing Assembly. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-10. Suspension System for Acoustic Lay-in Panel Ceilings – General Bracing Layout. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Note: See California DSA IR 25-5 (06-22-09) for additional information. Figure G-11. Suspension System for Acoustic Lay-in Panel Ceilings – Overhead Attachment Details. ### a) Gypsum board attached directly to ceiling joists ### b) Gypsum board attached directly to furring strips (hat channel or similar) Note: Commonly used details shown; no special seismic details are required as long as furring and gypboard secured. Check for certified assemblies (UL listed, FM approved, etc.) if fire or sound rating required. Figure G-12. Gypsum Board Ceiling Applied Directly to Structure. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-13. Retrofit Detail for Existing Lath and Plaster. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-14. Diagrammatic View of Suspended Heavy Ceiling Grid and Lateral Bracing. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) A-A Main Runner at Perimeter **B-B Cross Runner at Perimeter** Figure G-15. Perimeter Details for Suspended Gypsum Board Ceiling. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### See figure 6.3.4.1-7 for connections of bracing and hanger wire to structure **Note:** Compression strut shall not replace hanger wire. Compresion strut consists of a steel section attached to main runner with 2 - #12 sheet metal screws and to structure with 2 - #12 screws to wood or $1/4^{\prime\prime}$ min. expansion anchor to concrete. Size of strut is dependent on distance between ceiling and structure ($I/r \le 200$). A 1" diameter conduit can be used for up to 6', a $1-5/8^{\prime\prime\prime}$ X $1-1/4^{\prime\prime\prime}$ metal stud can be used for up to 10'. See figure 6.3.4.1-6 for example of bracing assembly. Figure G-16. Details for Lateral Bracing Assembly for Suspended Gypsum Board Ceiling. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ### **Light Fixtures** Figure G-17. Recessed Light Fixture in suspended Ceiling (Fixture Weight < 10 pounds). (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-18. Recessed Light Fixture in suspended Ceiling (Fixture Weight 10 to 56 pounds). (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # **Contents and Furnishings** Figure G-19. Light Storage Racks. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Purchase storage racks designed for seismic resistance. Storage racks may be classified as either nonstructural elements or nonbuilding structures depending upon their size and support conditions. Check the applicable code to see which provisions apply. Figure G-20. Industrial Storage Racks. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-21. Wall-mounted File Cabinets. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-22. Base Anchored File Cabinets. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Engineering required for all permanent floor-supported cabinets or shelving over 6 feet tall. Details shown are adequate for typical shelving 6 feet or less in height. Figure G-23. Anchorage of Freestanding Book Cases Arranged Back to Back. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-24. Desktop Computers and Accessories. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### **Cantilevered Access Floor Pedestal** #### **Braced Access Floor Pedestal** (use for tall floors or where pedestals are not strong enough to resist seismic forces) Note: For new floors in areas of high seismicity, purchase and install systems that meet the applicable code provisions for "special access floors." # Figure G-25. Equipment Mounted on Access Floor. Equipment installed on an independent steel platform within a raised floor Figure G-26. Equipment Mounted on Access Floor – Independent Base. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment restrained with cables beneath a raised floor Figure G-27. Equipment Mounted on Access Floor – Cable Braced. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment anchored with vertical rods beneath a raised floor Figure G-28. Equipment Mounted on Access Floor – Tie-down Rods. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # Mechanical and Electrical Equipment Note: Rigidly mounted equipment shall have flexible connections for the fuel lines and piping. Figure G-29. Rigidly Floor-mounted Equipment with Added Angles. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Supplemental base with restrained spring isolators Supplemental base with open springs and all-directional snubbers Supplemental base with open springs and one-directional snubbers Figure G-30. HVAC Equipment with Vibration Isolation. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-31. Rooftop HVAC Equipment. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-32. Suspended Equipment. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-33. Water Heater Strapping to Backing Wall. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-34. Water Heater – Strapping at Corner Installation. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-35. Water Heater – Base Mounted. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-36. Rigid Bracing – Single Pipe Transverse. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-37. Cable Bracing – Single Pipe Transverse. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ### **Electrical and Communications** Figure G-38. Electrical Control Panels, Motor Controls Centers, or Switchgear. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Wall-Mounted Figure G-39. Freestanding and Wall-mounted Electrical Control Panels, Motor Controls Centers, or Switchgear. Figure G-40. Emergency Generator. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage)